
Software Design
Methodologies and

Testing
(Subject Code: 410449)

(Class: BE Computer Engineering)

2012 Pattern

1

• Course Objectives

– To understand and apply different design methods and techniques

– To understand architectural design and modeling

– To understand and apply testing techniques

– To implement design and testing using current tools and
techniques in distributed, concurrent and parallel

– Environments

• Course Outcomes

– To present a survey on design techniques for software system

– To present a design and model using UML for a given software
system

– To present a design of test cases and implement automated testing
for client server, distributed, mobile applications

Objectives and outcomes

2

• Teaching Scheme Lectures:

– 3 Hrs/Week

• Examination Scheme

– In Semester Assessment: 30

– End Semester Assessment : 70

3

Other Information

Design Pattern

DesignPatterns;Introduction,creational,Structural
and behavioral patterns, singleton, proxy,
adapter, factory,I terator,observer pattern with
application

4

UNIT-III

UNIT-III
Design Pattern

5

Design Patterns

6

INTRODUCTION

WHAT IS A PATTERN ??
7

Blueprints

8

Similar structures ??

Structures may look different but still solve a common
problem. 9

So what is a pattern ??“Each pattern describes a

problem which occurs over

and over again in our

environment and then

describes the core of the

solution to that problem, in

such a way that you can use

this solution a million times
over.”

10

Content

1.Fundamental Design Patterns

A.Interface

B.Container

C.Delegation

2.Architectural Patterns

A.Model View Controller (MVC)

3.Structural Design Patterns

A.Facade

B.Decorator

C.Proxy

D.Adapter

4. Creational Design Patterns

A.Factory Method

B.Abstract Factory

C.Objectpool

D.Singleton

5. Behavioral Design

Patterns

A.Iterator

B.Observer

C.Event Listener

D.Strategy
11

http://best-practice-software-engineering.ifs.tuwien.ac.at/patterns_structural.html

MVC: Model-View-

Controller

A.Fan, Bulb Example

A.Rinse & Repeat
philosophy

12

Structural Patterns●Concerned with how classes

and objects are composed to

form larger objects.
●Types:

●Adapter

●Facade

●Proxy

●Decorator
13

What is an adapter?
●Convert the interface of a class

into another interface expected

by the client.

●Used to provide new interface

to existing objects.

●Also known as wrapper.

14

Adapter(non-software

example)

15

Structure

16

Adapter(software

counterpart)

17

Uses●Provides different interface to

existing objects.

●Adapter makes two existing

interfaces work together as

opposed to defining entirely new

one.

18

Facade
Facade shows how to make a

single object represent an entire

subsystem. It carries out its

responsibility by forwarding

messages to the objects it

represents.

19

http://best-practice-software-engineering.ifs.tuwien.ac.at/patterns/facade.html

Video:Facade & Adapter

20

Facade (Non-Software)

Provide a
unified

interface to a set

of interfaces in a

subsystem.

21

Decorator●What is Decorator?

●Decorator allows to modify an

object dynamically.

●Rather than rewrite old code

you can extend with new code.

22

Structure

23

Uses●add responsibilities to individual
objects transparently.

●remove these responsibilities

again without affecting other
objects.

24

Proxy

Proxy acts as a placeholder for

another object. A level of indirection is

introduced hence a Proxy can be used

in different ways - it can restrict,

enhance or alter properties of the

object it represents.

25

http://best-practice-software-engineering.ifs.tuwien.ac.at/patterns/proxy.html

Non-Software Example

26

Proxy: Example

27

Creational Design Patterns

•Factory Method

•Abstract Factory

•Object pool

•Singleton

28

Factory Method

29

Factory Method

Animal factory

30

Factory Method

Animal Factory

31

Factory Method

32

Factory Method
•In Factory pattern, we create object
without exposing the creation logic
and refer to newly created object
using a common interface.

•In simple words, if we have a super
class and n sub-classes, and based on
data provided, we have to return the
object of one of the sub-classes, we
use a factory pattern.

33

Factory Method•The basic principle behind this
pattern is that, at run time, we get an
object of similar type based on the
parameter we pass.

•If object creation code is spread in
whole application, and if you need to
change the process of object creation
then you need to go in each and
every place to make necessary
changes. 34

Factory Method

When to use Factory Pattern?

35

Abstract Factory Method

36

Abstract Factory Method

Abstract Factory pattern is a super-factory which creates

other factories. This factory is also called as Factory of
factories.

37

Object Pool Pattern•When the objects are no longer

needed by the processes , they are

released to the pool.

•Object pool lets us to reuse the objects

that are released into object pool.

•We can instantiate the new objects

instead of waiting for the release of

objects.

38

Example(non-software)

39

Applications

1. Several parts of the application requires the
same object at different parts of the program.

2. Program periodically needs objects which are
very expensive to create.

40

Singleton Pattern

•Most of the times we need single object of the
class to maintain the originality of the class.

•Class itself is given the responsibility of taking
care of single object creation.

41

USES

•The Abstract Factory and Builder patterns can
use Singletons in their implementation.

42

Applications

1. There must be exactly one instance of a class,

and it must be accessible for many clients via a
known access point.

2. The sole instance should be extensible by sub-

classing , hence clients should be able to use an
extended instance without changes in their code.

43

Behavioral Pattern

•Behavioral Design Patterns are design patterns

that identify common communication patterns

between objects and realize these patterns. -
WIKIPEDIA

•Are concerned with algorithms and the
assignment of responsibilities between objects

44

Types of Behavioral

Patterns

●Iterator

●Chain of responsibility

●Observer

●Command

●Strategy

45

Iterator Pattern

•Problem: Clients that wish to access all

members of a collection must perform a

specialized traversal for each data

structure.

46

Solution

•Solution: Implementations perform

traversals. The results are

communicated to clients via a standard

interface.

•Encapsulation

47

Iterator (Example)

48

Example

49

Chain Of Responsibility

● We have different objects that can do the job but

we do not want the client object know which is
actually doing it.

●It created a chain of receiver objects for a
request.

50

Real-Time Examples

51

Sequence and Class Diagram

52

Mediator

53

Observer

•Defines a one-to-many dependency between
objects

•Main-idea :Object always require exact data of
other object

54

Solutions

•POLLING

•DELEGATION

Methods to notify:

•Pull model

•Push model

55

Observer (Example)

56

When it is useful??

•When we don’t know how many objects need
to change their state

•When an object is able to notify other objects

without making assumptions about what those
objects are

57

Command

Encapsulate requests for service from an object inside

other object(s) and manipulate requests.

Command objects are mainly helpful in undo/redo
operation where the previous state can be saved.

58

Real Time Example(Hotel)

59

Real Time Example(Menu)

60

Class Diagram

61

Strategy

●Used when there are multiple algorithms for
the same task and it is to be chosen at runtime.

62

Real Time Example

63

Real Time Examples

64

Class Diagram

65

Advantages

1.Speed

2.Reuse.

3.Documented solutions.

4.Communication Standards

5.Always evolving.

66

Drawbacks & Criticisms

“Design patterns are a form of complexity. As

with all complexity, I'd rather see developers

focus on simpler solutions before going straight

to a complex recipe of design patterns.”

"Design Patterns" solution is to turn the

programmer into a fancy macro processor.

67

http://www.codinghorror.com/blog/archives/000380.html
http://www.codinghorror.com/blog/archives/000380.html

Drawbacks & Criticisms

68

Our thoughts..

You could read Design Patterns like

any number of other software

developers before you. But we

humbly suggest that you should go

deeper and read A Pattern Language,

too, because ideas are more

important than code.
69

http://www.amazon.com/exec/obidos/ASIN/0201633612/codihorr-20
http://www.amazon.com/exec/obidos/ASIN/0195019199/codihorr-20
http://www.codinghorror.com/blog/archives/000189.html
http://www.codinghorror.com/blog/archives/000189.html

Components
Name:
Problem: Should describe when to apply
the pattern
Solution: Should describe the elements
that make up the design, relationships,
responsibilities and collaborations
Consequences: Should describe the
results and trade-offs of applying the
pattern

Real-time example:
70

Gang of four

Nicknamed the

BIBLE

Of

Software Design
Patterns

71

MVC: Diagram

72

When MVC?

●MVC used in app frameworks, interactive systems

●In MVC, computational and representational aspects strictly
separated

●To be maintained throughout system’s evolution

●Offers skeleton for interactive systems

●Addresses Non-functional rqmts: flexibility, changeability of
UI

73

MVC: Another Example

74

75

AGENDA COVERED

• Patterns and Design Patterns

• Need of usage

• Reason behind their division

• Basic confusion

• Types of design patterns

• Design pattern elements

76

Patterns

• Patterns capture the static and dynamic structure and

collaboration among key participants in software designs

• Especially good for describing how and why to resolve

nonfunctional issues

• Patterns facilitate reuse of successful software architectures and

designs

77

Design pattern

• A general reusable solution to a commonly occurring problem

within a given context in software design

• Describes recurring design structures

• Describes the context of usage

78

Need of usage

• Speed up the development process by providing tested, proven

development paradigms

• Reusing design patterns helps to prevent issues that can cause major

problems

• Improves code readability for coders and architects who are familiar

with the patterns

79

Reason behind their division

• The problems are different

• The contexts are different

• The designs we choose are different

• The OOPs concepts used to solve the problems are different

80

Basic confusion

• Not a finished design that can be directly transformed

to code

• Just a template which shows how to solve the

problem in different situations

81

Design patterns existing…

There are many types of design patterns, like

• Algorithm strategy patterns addressing concerns related to high-level

strategies describing how to exploit application characteristic on a

computing platform.

• Computational design patterns addressing concerns related to key

computation identification.

• Execution patterns that address concerns related to supporting

application execution, including strategies in executing streams of tasks

and building blocks to support task synchronization.

82

Design patterns we existing…

83

• Implementation strategy patterns addressing concerns related to

implementing source code to support program organization, and the common

data structures specific to parallel programming.

• Structural design patterns addressing concerns related to high-level

structures of applications being developed.

Design patterns types

Creational pattern:

• Deal with object creation mechanisms

• Reduces the complexity of design by controlling the object

creation

• Further divided into two categories

– Object creational pattern

– Class creational pattern

84

Design Patterns types(Cond)…

Structural pattern:

• Ease the design by identifying a simple way to realize the relationship

between entities

Behavioral pattern:

• Identify common communication between objects

• Flexibility in carrying the communication between the objects increases

85

Elements of design patterns

There are 4 elements for a design pattern. They are

• Name: Describes the name of the design pattern being used in that context

• Problem: Describes when to apply the pattern

• Solution: Describes the elements that make up the design, relationships,

responsibilities and collaborations

• Consequences: Describes the results and trade-offs of applying the pattern

86

• ---------------------------

• BEHAVIORAL
PATTERNS:

• ---------------------------

• Strategy

• Iterator

• Template Method

• Mediator

• Observer

• Chain of Responsibility

• Memento

• Command

• State

• Visitor

• Interpreter

CREATIONAL
PATTERNS:

Introduction to
patterns
Factory Method

Abstract Factory
Builder
Prototype
Singleton
Object Pool
Lazy Initialization

STRUCTURAL
PATTERNS:

Decorator
Composite
Proxy
FlyWeight
Facade
Bridge
Adapter

87

DESIGN PATTERNS

Factory Method

&

Abstract Factory

88

AGENDA

• Factory Design Pattern

• AbstractFactory Design Pattern

89

PATTERN STANDARD FORMAT

• Name

• Problem

• Solution

• Consequences

• Real-time example

90

91

INTENT

Defines an interface for creating objects, but let

subclasses to decide which class to instantiate

92

93

PARTICIPANTS

AbstractProduct Declares a interface for operations that create abstract products

ConcreteCreator Implements operations to create concrete products.

ConcreteProduct
Defines a product to be created by the corresponding

ConcreteFactory

The classes that participate to the Factory pattern are:

94

APPLICABILITY (When to use?)
The Factory patterns can be used in following cases:

• When a class does not know which class of objects it must

create.

• A class specifies its sub-classes to specify which objects to

create.

• In programmer’s language, you can use factory pattern where

you have to create an object of any one of sub-classes

depending on the data provided.

95

CONSEQUENCES

The client code deals only with the product interface,

therefore it can work with any user defined Concrete Product

classes

New concrete classes can be added without recompiling the

existing client code

 It may lead to many subclasses if the product objects requires

one or more additional objects (Parallel class hierarchy)

96

97

INTENT

Provide an interface for creating families of related or

dependent objects without specifying their concrete

classes

98

99

PARTICIPANTS

AbstractFactory Declares a interface for operations that create abstract products

ConcreteFactory Implements operations to create concrete products.

ConcreteProduct
Defines a product to be created by the corresponding

ConcreteFactory

Client Uses the interfaces declared by the AbstractFactory class.

The classes that participate to the Abstract Factory pattern are:

100

APPLICABILITY (When to use?)

• A system should be independent of how its products are

created, composed, or represented

• A family of related product objects is designed to be used

together

• You want to provide a class library of objects, but reveal only

their interfaces

101

CONSEQUENCES

1. Concrete class isolation (Good)

• Client does not interact with the implementation classes

• Client only manipulates instances through the abstract

interfaces

2. Product families easily exchanged (Good)

• Only have to change the concrete factory

• Can be done at run time
102

CONSEQUENCES

3. Products are more consistent (Good)
• Helps the products in each product family consistently be

applied together (assuming they work well together)

• Only one family at a time

4. Difficult to support new kinds of products
(Bad)

• Extending existing abstract factories to make new
products is difficult and time consuming

• The family of products available is fixed by Abstract
Factory interface 103

Agenda

• Singleton Design Pattern

• Object Pool Design Pattern

104

DESIGN PATTERNS

105

4

To ensure that a class has only one instance and provides
a global access point

Intent

How can we guarantee that one and only one instance of a class

can be created?

Problem

107

• Create a class with a class operation getInstance().

• When class is first accessed, this creates relevant object instance

and returns object identity to client.

• On subsequent calls of getInstance(), no new instance is created,

but identity of existing object is returned.

Solution

108

Singleton Structure

Singleton

-uniqueInstance

-singletonData

+getInstance()

+getSingletonData()

+singletonOperation()

-Singleton()

Object identifier for singleton
instance

Returns object identifier for
unique instance

Private constructor only accessible
via getInstance()

getInstance() {

if (uniqueInstance == null)

{ uniqueInstance = new Singleton() }

return uniqueInstance

}

109

Example

110

111

Benefits

– Controlled access to the sole instance

– Permits a variable number of instances

113

Applicability

Singleton pattern can be applied when there must be
exactly one instance of a class and it must be accessible to clients

114

Consequences

115

• Reduced name space

• Permits refinement of operations and representations

• More flexible than class operations

117

Intent

Reuse and share the objects that are expensive to

create.

118

Structure

119

Applicability

• Your application requires objects which are "expensive" to create.

• Several parts of your application require the same objects at different

times.

120

Example

121

Known Uses

Instantiation of objects that represent:

• database connections

• socket connections

• threads

122

Specific problems

 Limited number of resources in the pool

 Handling situations when creating a new resource fails

 Synchronization

 Expired resources(unused but still reserved)

123

Can offer a performance boost where:

• object instantiation is cheaper

• number of instances at any one time is small

• Can make initialization time predictable where it would otherwise be

unpredictable (e.g. when squiring resources over a network)

Benefits

124

Real-World Illustrations

• Shoe shelf at a bowling club

• Library

125

126

127

128

129

130

131

132

133

134

135

136

137

