Software Design
Methodologies and
Testing

(Subject Code: 410449)
(Class: BE Computer Engineering)

2012 Pattern

Objectives and outcomes

* Course Objectives
— To understand and apply different design methods and techniques
— To understand architectural design and modeling
— To understand and apply testing techniques

— To implement design and testing using current tools and
techniques in distributed, concurrent and parallel

— Environments
e (Course Outcomes
— To present a survey on design techniques for software system

— To present a design and model using UML for a given software
system

— To present a design of test cases and implement automated testing
for client server, distributed, mobile applications

Other Information

* Teaching Scheme Lectures:
— 3 Hrs/Week

e Examination Scheme
— |n Semester Assessment: 30
— End Semester Assessment : 70

UNIT-III

Design Pattern

DesignPatterns;Introduction,creational,Structural
and behavioral patterns, singleton, proxy,
adapter, factory,| terator,observer pattern with
application

UNIT-1II
Design Pattern

S
Abstract E = S
o — - O
Behavioral @ 2 e R -0 3. -
Singleton R é Composite - = @ ¢
Template = =
Interpreter o

Factory s

Visitor

Patte

Interaction M eth 0 d

agile

Iterator
Builder
Flyweight
Adapter

NIX

State

n

Facade
Strategy

Prototype

Creational
Memento

-
hn

WHAT IS A PATTERN ?7?

Y
= & O
O <
D q
Dol Diok
Y, '(2'
e 622 2161 537
o M

fe—— 1688 ———

Structures may look different but still solve a common
problem.

"‘Each pattern describes a
problem which occurs over
and over agan In our
environment and then
describes the core of the
solution to that problem, In
such a way that you can use
this solution a million times
over.”

1.Fundamental Design Patterns _ _
4. Creational Design Patterns

A.Interface

Container A.Factory Method

) _ B.Abstract Factory

C.Delegation C.Objectpool
2.Architectural Patterns D.Singleton

A.Model View Controller (MVC) ' . .

_ 5. Behavioral Design
3.Structural Design Patterns
Patterns

Facade A.lterator

B.Decorator B.Observer

C.Proxy C.Event Listener

D.Adapter

D.Strategy

http://best-practice-software-engineering.ifs.tuwien.ac.at/patterns_structural.html

,1

S Ty

A.Fan, Bulb Example

A.Rinse & Repeat
philosophy

e Concerned with how classes
and objects are composed to

form larger objects.
e [ypes:

e Adapter

eFacade

e Proxy

eDecorator

.Convert the interface of a class
INto another interface expected
by the client.

eUsed to provide new Interface
to existing objects.

e Also known as wrapper.

Need 9v to
charge

Produce 220v

15

Adapter Design Pattem

T | Adupee
Resuest) SpeciicRequest(
aliglee
Adapter
RUQUESH) Qrp=mmmmmmmmm adaptoe->SpocificRequast() 1

16

17

eProvides different Interface to
existing objects.

eAdapter makes two existing
Interfaces work together as
opposed to defining entirely new
one.

Facade shows how to make a
single object represent an entire
subsystem. It carries out its
responsibility by forwarding
messages to the objects it
represents.

http://best-practice-software-engineering.ifs.tuwien.ac.at/patterns/facade.html

Customer Service
Facade

Order
Fulfillment

Billing

Shipping

Provide a
unified

Interface to a set
of interfaces in a
subsystem.

21

e\What Is Decorator?
eDecorator allows to modify an
object dynamically.

eRather than rewrite old code
you can extend with new code.

«interface»

IComponent
+Operation(): void

/g Q\

7 \
/ \
/ \
/ \
/ \
/ \
/ \
Component «abstract»
+Operation(): void Decorator

~-component: IComponent
+Operation(): void

[\

DecoratorA

DecoratorB

-~-newstate: State

+Operation(): void

+Operation(): void
+newOperation(): void

23

eadd responsibilities to individual
objects transparently.

eremove these responsibilities
again without affecting other
objects.

Proxy acts as a placeholder for
another object. A level of indirection Is
iIntroduced hence a Proxy can be used
In different ways - It can restrict,
enhance or alter properties of the
object It represents.

http://best-practice-software-engineering.ifs.tuwien.ac.at/patterns/proxy.html

Payment

+amaount()

AN

Feal subject

M

FundsPaidFromAccount

e e

Ll iere, Gyl o0 T R
HTH
R IR
ERlE

« Bank Name

iy e, g b, 8 i
5] i
RS I RTHT R R

CheckProxy

26

Client

---------- >

ceinterfaces>s
subject

Fromy

delegate

RealSubject

DoAction()

>

DoAction()

27

*Factory Method
*Abstract Factory
*Object pool
*Singleton

28

Quack quack Bark bark

29

Animal factory

ﬂlic Animal getAnimal(String animalType)
{

Animal animal =null;

if (“dog”.equals{animalType))

‘ animal = new Dogl();

e}lse if(“duck”.equals{animalType))
‘ animal = new Duck();
e)lse if(“lion”.equals(animalType))
{

animal = new Lion();

}
\return animal
}

Quack quack

public String speak(y;

Bark bark

Animal Factory

ﬂ!ic Animal getAnimal(String animalType)
{

public String speak(y:
Animal animal =null;
if (“dog”.equals(animalType))
{
animal = new Dog();
}
else if(“duck”.equals(animalType))
Client (
— animal = new Duck();
}
AnimalFactory animalFactory=new AnimalFactory (); else if(“lion".equals(animalType)) A . '
Animal animal = animalFactory.getAnimal(“dog”) { " ; » A
animal.speak();]ammal S &
return animal ————— R ——
} Quack quack Bark bark ! | Roar

Duck duck = new Duck();

duck.speak();

AnimalFactory
Duck duck = new Duck{4);
duck.speak(); public Animal getAnimal(String animalType)

Animal animal =null;
if (“dog".equals(animalType))

public String speak();

Client (
animal = new Dog();
}
AnimalFactory animalFactory=new AnimalFactory (); else If{"duck”.equals(animalType))
Animal animal = animalFactory.getAnimal{ "dog”) {
animal.speak(); animal = new Duck();
:)
else if(“lion".equals(animalType))
{

animal = new Lion();

}
\return animal]
}

eIn Factory pattern, we create object
without exposing the creation logic
and refer to newly created object
using a common interface.

eIn simple words, if we have a super
class and n sub-classes, and based on
data provided, we have to return the
object of one of the sub-classes, we
use a factory pattern.

33

eThe basic principle behind this
pattern is that, at run time, we get an
object of similar type based on the
parameter we pass.

oIf object creation code is spread in
whole application, and if you need to
change the process of object creation
then you need to go in each and

every place to make necessary
changes. .

When to use Factory Pattern?

AnimalFactory

SeaAnimalFactory LandAnimalFactory

public Animal getAnimal(String animalType)
{

// Based on animaltype it will create animal object
(Octopus / Shark) and return
1

N

public String speak();

public Animal getAnimal(String animalType)
{

// Based on animaltype it will create animal object
(dog / cat /lion) and return

Octopus

\ EEm =3 /

Abstract Factory pattern is a super-factory which creates
other factories. This factory is also called as Factory of
factories.

37

*\WWhen the objects are no longer
needed by the processes , they are
released to the pool.

*Object pool lets us to reuse the objects
that are released into object pool.

*\We can instantiate the new objects
iInstead of waiting for the release of
objects.

38

1. Several parts of the application requires the
same object at different parts of the program.

2. Program periodically needs objects which are
very expensive to create.

40

*Most of the times we need single object of the
class to maintain the originality of the class.

Class Iitself Is given the responsibility of taking
care of single object creation.

41

*The Abstract Factory and Builder patterns can
use Singletons in their implementation.

42

1. There must be exactly one instance of a class,
and it must be accessible for many clients via a
known access point.

2. The sole instance should be extensible by sub-
classing , hence clients should be able to use an
extended instance without changes in their code.

43

Behavioral Design Patterns are design patterns
that identify common communication patterns

between objects and realize these patterns. -
WIKIPEDIA

Are concerned with algorithms and the
assignment of responsibilities between objects

44

elterator

e Chalin of responsibility
eObserver

eCommand

e Strateqgy

45

Problem: Clients that wish to access all
members of a collection must perform a
specialized traversal for each data
structure.

46

Solution: Implementations perform
traversals. The results are
communicated to clients via a standard
Interface.

Encapsulation

47

i Microsoft Outlook Personal Folders Backup Setup

Micr 118

Start Installation

pdate

Are you ready to install?

Press the Next button to beagin or the Back button to reenter the installation
information.

=13

hadel

48

ChannelFrequencies

MethodOfTraversal ()

JAN

TunedChannel

MethodOfTraversal ()

Channellterator

Next()
Previous()

Channel Selector

49

.We have different objects that can do the job but
we do not want the client object know which is
actually doing it.

e[t created a chain of receiver objects for a
request.

50

Chain of Responsibility Pattern
| Ondy one Raceiver n the chain handles the Request

)

| One or mars Receivers in the chaln handkes the Request |
HundredRsHandler | @
.% . >
haha - FiityRsHandlar l I 1750 l\
—

Frafetiandls g

TwentyRsHancler
Withdravs
£55Rc

Chain of Responsibility Pattern

Sequence dugram

Class diagram

: Chent firstinChain : secondinChain :
holds Handler Handler

{ reference to n & handie(request) ’: :

- |

: hosde Handler SUCCOSSOT 1.1: handle(request) |

Client "reference to HandleRequest()
1.2:
inherits 2 [Eren sttt

: |

o |

[l I i |

ConcreteHandier1 ConcreteHandler2 : : :
HandleReques!() HandleRequest()

I can handle)

handhke request
1
}
if{cannot handle of further processing is neaded)

i

successor.handledrequest)

1
I

Handler == Receiver

52

Raju

Mediator Pattern~ Real Time Example

IAVAGroup

B facebook |}

Mediator Patter ~Real Time Example

The pilots of the planes approaching o departing the terminal area communicate with the tower rather than explicitly communicating with one another, The

constraints on who can take off or land are enforced by the tower, It s Important to note that the tower does not control the whole flight. It exists only to enforce

constraints (n the terminal area.
ATC Mediator

JIN=

Flight 747
Flight 1011 Flight 112

53

Defines a one-to-many dependency between
objects

Main-idea :Object always require exact data of
other object

54

POLLING
DELEGATION

Methods to notify:
Pull model
Push model

55

Anctioneer (Subject)

1. Accept Bad | . -
2. Broadcast New High Bid

g | v v
(;“ so1 | Bis | 127
& & ’“

Bidders (Observers)

56

When we don’'t know how many objects need
to change their state

When an object is able to notify other objects
without making assumptions about what those
objects are

57

Encapsulate requests for service from an object inside
other object(s) and manipulate requests.

Command objects are mainly helpful in undo/redo
operation where the previous state can be saved.

Invoker Object
4
[\

What to do? [Request]

Which Object can handle the
Reguest? [Receiver Object
Reference]

execute()—Call the receiver
object method

1.What food items the customer wanis?
‘ 2.Who can cook that?

Cook Customer Ord Waitress
(Receiver) (Client) (Command) (Invoker)
Order()
.
PlaceOrder()
COOkO Order

Thank You

59

Open Command

Open the doc [Reguest]

Which Object can
perform? [Document
Object Reference]

execute()

Close Command

Close the doc [Request]

Which Object can
perform? [Document
Object Reference]

execute()

Save Command

Save the doc [Request]

Which Object can
perform? [Document
Object Reference]

execute()

Menu Options [Invoker Object]

Command Pattern— Real time Example
2n -

Home
o save
B saveas
(&7 Open
o Close

Document [Receiver Object]

1.0pen the document
2.Close the Document
3.Save the Document

60

Client will create a

Concrete Command and
pass the reference of the

Receiver via the
Constructor.

The thent responsible tor
treating the Lommand eb)ttt
Lowmard cbiett tomsists @

ok attions om 3 velewvey

£as

The

et

Command Pattern— Class Diagram

Client

e :’K‘d A
m- ar
[N ot | 32 e e {0."\
— () wet™
the ¥ P
\) o *, s e
v J
Invoker Command
+execute(command : Command) [~~~ - +execute()
I
I
I
_________________________ ~
«creates» Commandimpl
‘\ -receiver
Receiver +exec1,1te()
+action() g
7
Z

receiver.action();

The actions and the
Rezewer are bownd toacther

in the Command obieet

obiett

provides ont method
. [} that entay

The Lommand

pelates
eretvte

and Lan bt

bhe Ltions

the atDons
ealled Lo wvoke

4 ey
on the Reter

eUsed when there are multiple algorithms for
the same task and it Is to be chosen at runtime.

Solution A ~ Solution B M Salution C

62

Strategy Pattern - Real Time Example Strategy Pattern - Real Time Example
Shovping Mol Thie traveler must chose the Strategy [options] based on tradeoffs between cost, convenience, and time
Cost : 50000 Rs
N

Strategy Pattem - Real Time Example

Selectionsort: repeatedly pick the smallest elament to append to the result

Insertion sort: repeatedly add new element to the sorted result.
Bubble sort: repeatedly compare neighbor pairs and swap If necessary,

[nput Array

InsertionSort Selection Sort Bubble Sort

Strategy Patten - Real Time Example

L swarh: 1 -2 sequental sagrch or it saarches e by . So it sow and R 1akas 100 mixh time t0 find out the data,

Binary search: n Bnary seech it divide the tabl ko two parts, & kowwer valu part and i upper value part, after daring It will check with the middle valug f
1 Josser than the seeched elemesntha it oes t right hal els It o to fft ha, Thesefore it necessary that the search fld of the table shauld be
scenxing order, 1 you sortthe It n descending order then binaty search falls

Input Array

12345678

Search element position

Binary Search

64

Strategy Pattern — Class Diagram

The Strategy is simply implemented
as an interface, so that we can
swap ConcreteStrateges in and out

Context is composed of a Strategy
The context could be anything that

would require changing behaviors without effecting our Context.

«interfaces
> @ Strategy

strategy

3 algorithm()

Strategy pattern is used when we have
multiple algorithm for 3 specific task and

chent decdes the actual anglementation to
be usad at runtime

| strategyA L StrategyB

& algorithm() & algorithm()

65

1.Speed

2.Reuse.

3.Documented solutions.
4.Communication Standards

5.Always evolving.

“Design patterns are a form of complexity. As
with all complexity, I'd rather see developers
focus on simpler solutions before going straight
to a complex recipe of design patterns.”

"Design Patterns" solution is to turn the
programmer into a fancy macro processor.

67

http://www.codinghorror.com/blog/archives/000380.html
http://www.codinghorror.com/blog/archives/000380.html

Design Patterns

Elements of Reusable
Object-Oriented.Sof

A Pattern Language

Towns - Buildings - Construction

AF1STINW-NOSIAAY

Richard

Christopher Alexander

Sara Ishikawa - Murray Silverstein
WITH

Max Jacobson - Ingrid Fiksdahl-King
Shlomo Angel

%
/)
%
Z
Z
z
Z
L
p o
/

You could read Design Patterns like
any number of other software
developers before you. But we
humbly suggest that you should go
deeper and read A Pattern Language,
too, because ideas are more
Important than code.

http://www.amazon.com/exec/obidos/ASIN/0201633612/codihorr-20
http://www.amazon.com/exec/obidos/ASIN/0195019199/codihorr-20
http://www.codinghorror.com/blog/archives/000189.html
http://www.codinghorror.com/blog/archives/000189.html

Name:

Problem: Should describe when to apply
the pattern

Solution: Should describe the elements
that make up the design, relationships,
responsibilities and collaborations
Consequences: Should describe the
results and trade-offs of applying the
pattern

Real-time example:

Nicknamed the
BIBLE
Of

Software Design
Patterns

Design Patterns

Elements of Reusable
Obiject-Oriented.Software

Erich Gamma
Richard Helnr

s

>
=
—4
o
-
o
Z
-
<
v
<
~
~
O
v
w0
~
o
Z
>
~
o~
O
z
e
~
-
Z
~
&
e
W

MODEL
//"

MANIPULATES

VIEW CONTROLLER
\
\%& «f’/
Y \5‘?
N\ /

72

eMVC used in app frameworks, interactive systems

eln MVC, computational and representational aspects strictly
separated

eTo be maintained throughout system’s evolution
e Offers skeleton for interactive systems

eAddresses Non-functional rgmts: flexibility, changeability of
Ul

73

K Microsoft Frol

ge Enterprise Edition - http://goldeneye/default.a:

i Fle Edit View Insert

Format Tools Table Data Frames Window Help

Type a question for help |+

D RBALB Se v/ c@Y - -« E0RA S DO T 28

» 10pt | B I U=

IIA!

ENormaI + Verdana
Folder List
[http:ffgoldeneye

3 _private

IC7) aspnet_client

[£3) book

IC3) reviews
[£5) showcase

I03) styles

[£3) test

@ default.asp
Default. vsdisco
__} desktop.ini

4%] global ASA

Show Desktop, scf
[supersiteindex.htm
test.him
test2.htm
todo.htm

4% updates.asp

[MFolder List| 89 Mavigation

06 x / Web Site ¥ defaultasp ¥,

|| <body> <body> <table.normal...> <tr> <td>

@ ¥

<tgble clazs="normal" width="100%" bordsr="0" cellpadding="0" cellspacing="0">
<Lr>

dth="20">snbap;</cd>
th="200" align="left" wvalign="top"><Iont size=1>
<h3rLatest Updates</h3>
<p claszs="hcomepage"><a
"xiE
="xa
="x<a
="x<a
/h3x
page"»<a
page"»<a

B
B
B

=]

=1

7idth="20">snbap;</td>
<td 2lign="left" valign="top">

T N N
o i

[T

December 6: In this

t's the future of Windows ...
e TOdayl!

new features and

:appli:ations in the next Microsoft

Dffica. fPauI Thurrott's SuperSite for Windows is dedicated to providing all of the |nformat|on

ou need to evaluate Microsoft's upcoming Windows operating system technologies, :
:ﬂ :'::Z"t‘:f:';;[);?'ﬂ:ﬁt hese exciting products include Windows XP Service Pack 1 (SP1), Windows .NET
20027 Check out my : Beruer (RTM in late 2002), Windows XP Media Center Edition {code-named
zhow report and shote ! :Freestyle) Windows XP Tablet PC Edition, and Windows Media 9 Series (code- named

;galler'l' It's the next best thing to : Torona, also due in late 2002)
being there H

November 13: My new _But future Windows versions promise to be even more exciting. The next major
Longhorn Aloha ¢ desktop Windows release, code-named Longhorn, is due in 2005 and will include
‘:;—i:l:tltlflr:;;;‘:‘sr‘l:t 3\1icroscft's Trustworthy Computing (Palladium) architectural changes, as well as a
I hew 3N viden-driven tser interface and a SOI Server-hased file svstem called

GDESlgn E'Sph E|C0de QPrewe'.' < | >

Default

Line 17, Column 24

14 seconds over 56Kbps 74

75

AGENDA COVERED

Patterns and Design Patterns
Need of usage

Reason behind their division
Basic confusion

Types of design patterns

Design pattern elements

Patterns

Patterns capture the static and dynamic structure and

collaboration among key participants in software designs

Especially good for describing how and why to resolve

nonfunctional issues

Patterns facilitate reuse of successful software architectures and

designs

Design pattern

A general reusable solution to a commonly occurring problem

within a given context in software design
Describes recurring design structures

Describes the context of usage

Need of usage

« Speed up the development process by providing tested, proven

development paradigms

« Reusing design patterns helps to prevent issues that can cause major

problems

« Improves code readability for coders and architects who are familiar

with the patterns

Reason behind their division

* The problems are different
« The contexts are different
» The designs we choose are different

« The OOPs concepts used to solve the problems are different

Basic confusion

* Not a finished design that can be directly transformed
to code

 Just a template which shows how to solve the

problem in different situations

Design patterns existing...

There are many types of design patterns, like

Algorithm strategy patterns addressing concerns related to high-level

strategies describing how to exploit application characteristic on a

computing platform.

Computational design patterns addressing concerns related to key

computation identification.

EXxecution patterns that address concerns related to supporting

application execution, including strategies in executing streams of tasks

and building blocks to support task synchronization.

Design patterns we existing...

« Implementation strateqy patterns addressing concerns related to

Implementing source code to support program organization, and the common

data structures specific to parallel programming.

« Structural design patterns addressing concerns related to high-level

structures of applications being developed.

Design patterns types

Creational pattern:

« Deal with object creation mechanisms

« Reduces the complexity of design by controlling the object
creation

 Further divided into two categories

— Object creational pattern

— Class creational pattern

Design Patterns types(Cond). ..

Structural pattern:

« Ease the design by identifying a simple way to realize the relationship

between entities

Behavioral pattern:

 ldentify common communication between objects

 Flexibility in carrying the communication between the objects increases

Elements of design patterns
There are 4 elements for a design pattern. They are

« Name: Describes the name of the design pattern being used in that context
« Problem: Describes when to apply the pattern

« Solution: Describes the elements that make up the design, relationships,

responsibilities and collaborations

» Consequences: Describes the results and trade-offs of applying the pattern

CREATIONAL
PATTERNS:

Introduction to
patterns
Factory Method

Abstract Factory
Builder
Prototype
Singleton

Object Pool

Lazy Initialization

STRUCTURAL
PATTERNS:

Decorator
Composite
Proxy
FlyWeight
Facade
Bridge
Adapter

BEHAVIORAL
PATTERNS:

Strategy

Iterator

Template Method
Mediator

Observer

Chain of Responsibility
Memento

Command

State

Visitor

87
Internreter

DESIGN PATTERNS

Factory Method

&
Abstract Factory

AGENDA

* Factory Design Pattern

* AbstractFactory Design Pattern

PATTERN STANDARD FORMAT

* Name

* Problem

e Solution

* Consequences

e Real-time example

FACTORY METHOD

INTENT

Defines an interface for creating objects, but let

subclasses to decide which class to instantiate

92

Male

¥Male()

public Person getPerson(String name, String iN
genden) {

if (gender equals("M"))

return new Male{name);

else ifigender.equals("F"))

return new Female(name);

else

return null;

Person
& name
&gender
%gethName()
%getGender()
Female
“Female()
I
\
|
I
I
P -
- - g
- - -
. -~ - -
SalutationFactory |~ -/ SalutationFactory factory = new SalutationFactory();
 _ factory.getPerson(args[0], args[1]);
¥main()
*gﬁtPerson()

}

93

PARTICIPANTS

The classes that participate to the Factory pattern are:

AbstractProduct | pecjares a interface for operations that create abstract products
ConcreteCreator | |5lements operations to create concrete products.

Defines a product to be created by the corresponding
ConcreteProduct
ConcreteFactory

APPLICABILITY (When to use?)

The Factory patterns can be used in following cases:

* When a class does not know which class of objects it must

create.

* A class specifies its sub-classes to specify which objects to

create.

* In programmer’s language, you can use factory pattern where
you have to create an object of any one of sub-classes

depending on the data provided.

95

CONSEQUENCES

» The client code deals only with the product interface,
therefore it can work with any user defined Concrete Product

classes

» New concrete classes can be added without recompiling the

existing client code

» |t may lead to many subclasses if the product objects requires

one or more additional objects (Parallel class hierarchy)

96

ABSTRACT FACTORY

INTENT

Provide an interface for creating families of related or
dependent objects without specifying their concrete

classes

98

ABSTRACT FACTORY

Creates family Of

traditional produces.

{Abstract Factory)

InteriorDesign ﬂnes the interfFace

+createDoor():Door

iy

Creates family Of

contemporary proguces.

\ +createChair():Chair

e [
TraditionalStyle

{(Concrete Factory)

[ContemporaryStyle)

(Concrete Factory)

+createDoor{(): Door
+createChair() :Chair

+createDoor{): Door

+createChair(): Chal:-

TraditionalDoor
(Concrete Product)

ArAfsetc thhe style thhe client wan%s arnd
InterjiorDesign design
A create pieces foxr a design:

Then do that,
craditional one

-
| TraditionalChair
{Concrete Product)

Y

ontemporaryDoo
{Concrete Product)

1.._____

Contem poraryChai s
Concrete Product)

-
hhen cCcreate the pieces

= new TraditionalStyle(] s

SrAfcreate a TraditionalDoox

Door door = design.createDoox () >
FSrAfcreate a TraditionalChairxr

Chair chair = design.createChairxrd() >

dooxr, chair.
the client ask for a dooxr and recelives a

99

PARTICIPANTS

The classes that participate to the Abstract Factory pattern are:

AbstractFactory | pocjares a interface for operations that create abstract products
ConcreteFactory | |, pements operations to create concrete products.

Defines a product to be created by the corresponding
ConcreteProduct

ConcreteFactory

Client Uses the interfaces declared by the AbstractFactory class.

APPLICABILITY (When to use?)

A system should be independent of how its products are

created, composed, or represented

A family of related product objects is designed to be used

together

* You want to provide a class library of objects, but reveal only

their interfaces

101

CONSEQUENCES

1. Concrete class isolation (Good)

 C(Client does not interact with the implementation classes

 C(Client only manipulates instances through the abstract

interfaces

2. Product families easily exchanged (Good)

* Only have to change the concrete factory

e (Canbedone at runtime

102

CONSEQUENCES

3. Products are more consistent (Good)

 Helps the products in each product family consistently be
applied together (assuming they work well together)

* Onlyone family at a time

4. Difficult to support new kinds of products
(Bad)

 Extending existing abstract factories to make new
products is difficult and time consuming

e The family of products available is fixed by Abstract
Factory interface 103

Agenda

DESIGN PATTERNS

* Singleton Design Pattern

* Object Pool Design Pattern

Intent

To ensure that a class has only one instance and provides
a global access point

Problem

How can we guarantee that one and only one instance of a class

can be created?

Solution

* Create a class with a class operation getInstance().

 When class is first accessed, this creates relevant object instance

and returns object identity to client.

* On subsequent calls of getinstance(), no new instance is created,

but identity of existing object is returned.

Singleton Structure

Singleton

-uniquelnstance —
-singletonData

+getinstance() —
+getSingletonData()
+singletonOperation()

-Singleton() —

I

Object identifier for singleton

- — instance

Returns object identifier for
unigue instance

Private constructor only accessible
via getinstance()

getinstance() {
if (uniquelnstance == null)

{ uniquelnstance = new Singleton() }

return uniquelnstance

c
o
=
©
o
c
@
£
2
o
E
=
c
o
=

Conven

Singleton implementation

111

Benefits

— Controlled access to the sole instance

— Permits a variable number of instances

Applicability

Singleton pattern can be applied when there must be
exactly one instance of a class and it must be accessible to clients

Consequences

* Reduced name space
* Permits refinement of operations and representations

* More flexible than class operations

Q\d\ec

&\’OO\

Intent

Reuse and share the objects that are expensive to
create.

Structure

ReusablePacl

ReusablaPool gatinstance() acquareReusabla() Telisables
5 Halallc gatlnstance) ReusablePool
+acquireReusabla() : Reusable
treteaseReusabie(in a : Reusable)
taeiMarPoolSize(in size)

119

Applicability
* Your application requires objects which are "expensive" to create.

* Several parts of your application require the same objects at different

times.

Example

1 ¢ myShoes = Shelf.acquireshoes(); 2. client.wear(myShoes);

.-lll..
=3 "

B

SHELF (OBJECT POOL)

\ 3

&
& ©
"Saagpun”

4. Shelf.releaseShoes(myShoes); 3. A e pTaneys

121

Known Uses

Instantiation of objects that represent:
* database connections
» socket connections

 threads

Specific problems

» Limited number of resources in the pool
» Handling situations when creating a new resource fails
» Synchronization

» Expired resources(unused but still reserved)

Benefits

Can offer a performance boost where:
* object instantiation is cheaper
* number of instances at any one time is small

* (Can make initialization time predictable where it would otherwise be

unpredictable (e.g. when squiring resources over a network)

Real-World lllustrations

* Shoe shelf at a bowling club

* Library

DirectoryStructure
(Component)

=+

—aglil}

+expand()
+collapse()

+getFile()
+getFolder()

L

Iy Wideo
= [y Documenks

=) Links

[£] readme.txk
[£] license.bxk

Rt

File Folder
(Leaf) (Com posite)
+expand()

+collapse()

+getFile()
+getFolder()

126

{Abstract Factory)

ABSTRACT FACTORY InteriorDesign (Wmes the interface

Creates family of +createDoor():Door Creates family Of
traditional produces. +createChair():Chair contemporary productes.
- i . I
TraditionalStyle ContemporaryStyle|
(Concrete Factory) (Concrete Factory)
+createDoor():Door +createDoor{):Door
+createChair() :Chair +createChair():Chair
4 | ¥

|
TraditionalDoor '
(Concrete Product) : ontemporaryDoo

— g I {Concrete Product)
TraditionalChair * = . -
(Concrete Product) ContemporaryChai ‘

Concrete Product)

AAserc . the sctyle the clientc wan%s arnd hen'Ereate the pieces
InteriorDesign design = new TraditionalStyle() s

SE¥create pieces Loxr a-design: door, chair.

When do that, the client ask for a dooxr and receives a
traditional one®/

ArAfcreate a TraditionalDoox

Dooxr door = desicgn.createDoox () >

FrAfcreate a TraditionalChair

Chair chair = design.createChaixrd() >

et 12y

< s

Uuse
(Target) (Adaptee)
+USB() +PS2()

MousePortAdapter
(Adapter)

+uUsB() O "’ ‘dl
/ i
/ \

mousePSZ20bject.PS2{);

—

128

DirectoryStructure
(Component)

=+

—~—mpi

+aexpand
+collapse
+getFile()
+getFolder()

AL

I video
=l Ly Documents

I Links

[£] readme.txtk
[Z] license . kxk

>,

File Folder
{Leaf) (Composite)
+expand

+collapse

+getFile()
+getFolder()

129

Tlhe DirectorfCarSalesiMan) constructs
an object using the Builder interface.

customer
:Customer

carSalesMan
CarSalesMan

new Mechanlci h |

new CarSalesMan(()

mechanic
.- Mechanic

orderCarwithOptions$ ()

obtainCar()

mount(sunroof) e

mount(heatedchairs)

mount{remotestarter)

o getCar()

The Car represents the complex
object under construction.

oThe client creates the Director object and configures it with the desired Builder object
o Director notifies the builder whenever a part of the product should be built.

o Builder handles requests from the director and adds parts to the product.

ConcreteBuilder(Mechanic) builds the product's intermal representation and
odef‘ir‘ues the process by which it's assembled.

The client retrieves the product from the builder.

130

DECORATOR

VisualComponent
(Component)

+—hang()

L

Painting

(ConcreteComponent)

+hang()

Decorator f
{Decorator)

i IMAGE

+hang()

<>

A

|
Frame
ConcreteDecoratoriA) ConcreteDecorators)

|
Matte

+hang()

+hang({)

INMAGE

131

Client

.

o911

(Facade)

:

Ambulance | Police | | FireBrigade
{SubsystemClass) {(SubsystemClass) (SubsystemClass)

132

Toy
{Abstract Product)

FACTORY METHOD

==<inject==>=

A= == EEaee e
|
|
|
|
|
|
|

Doll Gozzila :
(Concrete Product) (Concrete Product I
e ' |
|
_ i |
A |
|
| | |
| | |
| I I
S N Ve o e se o sn il |
| | I
| | |
1 1 I
ToyDie I
(Concrete Creator) _:
+inject(String toy): Toy q
+getlToy(String I:oy):'l:gg.o]\
e = \
Toy toy = this.inject{(""doll™); \\
Ve implementing a variety of if (toy == “"doll™)
parameterized factory methods returm new Doll{);
with the Creafor as concrete if (toy == ""gozzila™)

class:

returm new Gozzilad();

133

DialTonaeGankFactory | _ Dial T oneGenfFPFool
(FlyweightFactory) dialTones poaol (Flyweight)
+getDialTone() O +useDialToneSound()}
II.I J\
/
[)
o f/
F s -
5 I DialTonaeGan

g T
TClient I," (ConcreteFlyweight)
I
I ! e seDialToneSound()
I
i
]
,." UnsharedDialTonaGean
I {UnsharedConcreteFlyweight)
)
if (dialTone exists){ — | s useDialToneSound()

return exidi=tingg didialTome:
¥} eldl=e §
Ccreate mewr dialTome
add at to pool of ddalTome ;s
return the new dialTome:

134

FROTOTYPE

CDreclares an interface for cloning itself.
This typically inwvolves defiming a “clone” function that returnms
a copy of the original aobject.

\v

Celf
(A bstrackt Protoktype)

+split)

W

SingleCsall

{ Concrete Probtobype)

+SingleCell()

+SingleCell(Cell) @ —— " | does construction of the
+split() P compatible object and the
F copying of the data.

!
!

|

returm new SingleCcell{this)

> The returmned object has thhe same data and state
as the original object.

— -This is a "Copy Constructor” that

135

SINGLETON

FootballWeorid

Championship
(Singlston)

- worldChampionTeam

- Foot:ballWoridChamp_lonshlp();)
- getWorldChampionTeamd({) ,

--- /s
returm worldChampionTeam

» Ensure a class only has one instance. and provide a global point of
access to it

136

