
Software Design
Methodologies and

Testing
(Subject Code: 410449)

(Class: BE Computer Engineering)

2012 Pattern

• Course Objectives

– To understand and apply different design methods and techniques

– To understand architectural design and modeling

– To understand and apply testing techniques

– To implement design and testing using current tools and
techniques in distributed, concurrent and parallel

– Environments

• Course Outcomes

– To present a survey on design techniques for software system

– To present a design and model using UML for a given software
system

– To present a design of test cases and implement automated testing
for client server, distributed, mobile applications

Objectives and outcomes

2

• Teaching Scheme Lectures:

– 3 Hrs/Week

• Examination Scheme

– In Semester Assessment: 30

– End Semester Assessment : 70

3

Other Information

Architectural Design

Architectural Design, importance and

architecture views, client-server, service

oriented, component based concurrent and real

time software architecture with case studies

BE Computer - SDMT 4

UNIT-II

UNIT-II

Architectural Design

Software Design Model

Information

model

Functional

model

Behavioral

model

Other

requirements

Design

Code

Test

Data design

Architectural

design

Procedural

design

Program

modules

Integrated

& validated

software

Steps

Begins with

Proceeds to

Architectural Design

Data Design

Architectural structure of the system

Steps (contd.)

Analysis of alternative

architectural styles or patterns

Selection of

Alternative

Elaboration of

Architecture

Software Architecture

• What Is Architecture?

– The software architecture of a program or

computing system is the structure or

structures of the system, which comprise

software components, the externally visible

properties of those components, and the

relationships among them.

– The architecture is not the operational software.

Architectural Styles

 Data-centered architectures

 Data flow architectures

 Call and return architectures

 Object-oriented architectures

 Layered architectures

Each style describes a system category that encompasses: (1) a set of
components (e.g., a database, computational modules) that perform a
function required by a system, (2) a set of connectors that enable
“communication, coordination and cooperation” among components, (3)
constraints that define how components can be integrated to form the
system, and (4) semantic models that enable a designer to understand the
overall properties of a system by analyzing the known properties of its
constituent parts.

Data-Centered Architecture

Data Flow Architecture

Call and Return Architecture

Layered Architecture

. 15

ADL

• Architectural description language

(ADL) provides a semantics and syntax

for describing a software architecture

• Provide the designer with the ability to:

– decompose architectural components

– compose individual components into larger

architectural blocks and

– represent interfaces (connection

mechanisms) between components.

• structure or structures of the system which comprise
– The software components
– The externally visible properties of those components
– The relationships among the components

• Software architectural design represents the structure of the data and
program components that are required to build a computer-based
system

• The design process for identifying the sub-
systems making up a system and the framework
for sub-system control and communication is
architectural design.

• The output of this design process is a description
of the software architecture.

Architectural Design-Introduction

16

• A software architecture is defined by Bass, Clements, and

Kazman (2003) as follows:

• “The software architecture of a program or computing system

is the structure or structures of the system, which comprise

software elements, the externally visible properties of those

elements, and the relationships among them.”

Architectural Design-Introduction

17

• Basic Steps
– Creation of the data design

– Derivation of one or more representations of the
architectural structure of the system

– Analysis of alternative architectural styles to choose the
one best suited to customer requirements and quality
attributes

– Elaboration of the architecture based on the selected
architectural style

• A database designer creates the data architecture for a
system to represent the data components

• A system architect selects an appropriate architectural
style derived during system engineering and software
requirements analysis

18

Architectural Design-Introduction

• A software architecture enables a software engineer to

– Analyze the effectiveness of the design in meeting its stated
requirements

– Consider architectural alternatives at a stage when making
design changes is still relatively easy

– Reduce the risks associated with the construction of the
software

• Focus is placed on the software component

– A program module

– An object-oriented class

– A database

– Middleware

19

Architectural Design-Introduction

• An early stage of the system design process.

• Represents the link between specification

and design processes.

• Often carried out in parallel with some

specification activities.

• It involves identifying major system

components and their communications.

20

Architectural Design-Introduction

• Representations of software architecture are an enabler
for communication between all stakeholders interested
in the development of a computer-based system

• The software architecture highlights early design
decisions that will have a profound impact on all
software engineering work that follows and, as
important, on the ultimate success of the system as an
operational entity

• The software architecture constitutes a relatively small,
intellectually graspable model of how the system is
structured and how its components work together

21

Importance of Software Architecture

• A key to reducing development costs
– Component-based development philosophy

– Explicit system structure

• A natural evolution of design abstractions
– Structure and interaction details overshadow the choice of

algorithms and data structures in large/complex systems

• Benefits of explicit architectures
– A framework for satisfying requirements

– Technical basis for design

– Managerial basis for cost estimation & process
management

– Effective basis for reuse

– Basis for consistency, dependency, and tradeoff analysis

– Avoidance of architectural loss

22

Importance of Software Architecture

• Client/Server
– Segregates the system into two applications, where the

client makes requests to the server.

– In many cases, the server is a database with application
logic represented as stored procedures.

• Service-Oriented Architecture (SOA)
– Refers to applications that expose and consume

functionality as a service using contracts and messages.

• Component-Based Architecture
– Decomposes application design into reusable functional or

logical components that expose well-defined
communication interfaces.

23

Key Architectural Styles

Client Server Architecture

• A network architecture in
which each computer or
process on the network is
either a client or a server.

• The simplest client/server
architecture has one
service and many clients.

• More complex
client/server systems
might have multiple
services.

24

Components

• Clients

• Servers

• Communication Networks

Client

Server

25

• Applications that run on computers

• Rely on servers for

– Files

– Devices

– Processing power

• Example: E-mail client

– An application that enables you to send and

receive e-mail

Clients

Clients are Applications

26

Servers

• Computers or processes that manage

network resources

– Disk drives (file servers)

– Printers (print servers)

– Network traffic (network servers)

• Example: Database Server

– A computer system that processes database

queries

Servers Manage

Resources

27

Communication Networks

Networks Connect

Clients and

Servers

28

Architectural Styles and Strategies

• Client/server architectures are based on client/service

architectural patterns, the

• simplest of which consists of one service and multiple clients.

• Two types of components:

– Server components offer services

– Clients access them using a request/reply protocol

• Client may send the server an executable function, called a

callback

– The server subsequently calls under specific circumstances

29

• The Multiple Client/Single Service

architectural pattern consists of several

clients that request a service and a service

that fulfills client requests.

• The simplest and most common client/server

architecture has one service and many

clients, and for this reason the Multiple

Client/Single Service architectural pattern is

also known as the Client/Server or

Client/Service pattern.
30

Multiple Client/Single Service

Architectural Pattern

• This system contains multiple ATMs and one banking
service.

• For each ATM there is one ATM Client Subsystem, which
handles customer requests by reading the ATM card and
prompting for transaction details at the keyboard/ display.

• For an approved withdrawal request, the ATM dispenses
cash, prints a receipt, and ejects the ATM card.

• The Banking Service maintains a database of customer
accounts and customer ATM cards.

• It validates ATM transactions and either approves or rejects
customer requests, depending on the status of the customer
accounts.

31

Example

32

• In the Multiple Client/Multiple Service

pattern, in addition to clients requesting a

service, a client might communicate with

several services, and services might

communicate with each other.

• With this pattern, a client could

communicate with each service sequentially

or could communicate with multiple

services concurrently. 33

Multiple Client/Multiple Service

Architectural Pattern

• An example of the Multiple Client/Multiple Service
architectural pattern is a banking group consisting of multiple
interconnected banks

• Continuing with the ATM example, besides several ATM
clients accessing the same bank service, it is possible for one
ATM client to access multiple bank services.

• This feature allows customers to access their own bank service
from a different bank’s ATM client. In this example, ATM
customers from Bank of India can withdraw funds from State
Bank of India in addition to their own Bank of India, and vice
versa.

34

Example

• The main benefits of the client/server architectural style are:

• Higher security: All data is stored on the server, which generally
offers a greater control of security than client machines.

• Centralized data access: Because data is stored only on the
server, access and updates to the data are far easier to administer
than in other architectural styles.

• Ease of maintenance: Roles and responsibilities of a computing
system are distributed among several servers that are known to
each other through a network.
– This ensures that a client remains unaware and unaffected by a

server repair, upgrade, or relocation.

35

Benefits of Client-Server

Architecture

• The Multi-tier Client/Service pattern has an
intermediate tier (i.e., layer) that provides both a
client and a service role.

• An intermediate tier is a client of its service tier and
also provides a service for its clients.

• It is possible to have more than one intermediate
tier.

• When viewed as a layered architecture, the client is
considered to be at a higher layer than the service
because the client depends on and uses the service.

36

Multi-tier Client/Service

Architectural Pattern

37

38

• The main benefits of the N-tier/3-tier architectural style are:

• Maintainability: Because each tier is independent of the

other tiers, updates or changes can be carried out without

affecting the application as a whole.

• Scalability: Because tiers are based on the deployment of

layers, scaling out an application is reasonably

straightforward.

• Flexibility: Because each tier can be managed or scaled

independently, flexibility is increased.

• Availability: Applications can exploit the modular

architecture of enabling systems using easily scalable

components, which increases availability.
39

Benefits of the N-tier/3-tier

architectural style

• A service-oriented architecture (SOA) is a distributed software

architecture that consists of multiple autonomous services.

• The services are distributed such that they can execute on

different nodes with different service providers.

• With a SOA, the goal is to develop software applications that

are composed of distributed services, such that individual

services can execute on different platforms and be

implemented in different languages.

40

Service Oriented Architecture (SAO)

Design

• Standard protocols are provided to allow services to

communicate with each other and to exchange information.

• In order to allow applications to discover and communicate

with services, each service has a service description.

• The service description defines the name of the service, the

location of the service, and its data exchange requirements.

41

Service Oriented Architecture

Design

• A service provider supports services used by multiple
clients.

• Usually, a client will sign up for a service provided by a
service provider, such as an Internet, email, or Voice
over Internet Protocol (VoIP) service.

• Unlike client/server architectures, in which a client
communicates with a specific service provided on a
fixed server configuration.

• SOAs, which build on the concept of loosely coupled
services that can be discovered and linked to by clients
(also referred to as service consumers or service
requesters) with the assistance of service brokers.

42

Service Oriented Architecture

Design

• Services need to be designed according to certain key
principles.

• Many of these concepts are good software engineering and
design principles, which have been incorporated into SOA
design.

• Loose coupling: Services should be relatively independent
of each other and a service should hold a minimum amount
of information about other services and ideally should not
depend on other services.

• Service contract: A service provides a contract, which a
SOA application can rely on.
– The contract is typically defined in the service interface in the

form of a set of operations and each operation usually has input
and output parameters, but it can also include quality of service
parameters such as response time and availability.

43

Design Principles for Services

• Autonomy: Each service is self-contained, such that it
can operate independently without the need of other
services.
– This concept can be achieved by separating services from

coordination, so that services do not directly communicate
with each other.

• Abstraction: As with object-oriented design, the details
of a service are hidden, A service only reveals its
interface in terms of the operations it provides, and for
each operation, the inputs it needs, and the outputs it
returns.

• Reusability: A key goal of SOA is to design services
that are reusable.
– The preceding design goals of services are intended to

facilitate reuse.

44

Design Principles for Services

• Composability: Services are designed to be
capable of being assembled into larger
composite services.

– In some cases, a composite service also needs to
provide coordination of the individual services.

• Statelessness: Where possible, services
maintain little or no information about specific
client activities.

• Discoverability: A service provides an external
description to help allow it to be discovered by
a discovery mechanism.

45

Design Principles for Services

• In a SOA, object brokers act as

intermediaries between clients and services.

• The broker frees clients from having to

maintain information about where a

particular service is provided and how to

obtain that service.

• Sophisticated brokers provide white pages

(naming services) and yellow pages (trader

services) so that clients can locate services

more easily.

46

SOFTWARE ARCHITECTURAL

BROKER PATTERNS

• In the Broker pattern (which is also known

as the Object Broker or Object Request

Broker pattern), the broker acts as an

intermediary between the clients and

services. Services register with the broker.

• Clients locate services through the broker.

• After the broker has brokered the

connection between client and service,

communication between client and service

can be direct or via the broker.

47

SOFTWARE ARCHITECTURAL

BROKER PATTERNS

• The broker provides both location transparency and

platform transparency.

• Location transparency means that if the service is moved

to a different location, clients are unaware of the move

and only the broker needs to be notified.

• Platform transparency means that each service can

execute on a different hardware/software platform and

does not need to maintain information about the

platforms that other services execute on. 48

SOFTWARE ARCHITECTURAL

BROKER PATTERNS

• The main benefits of the SOA architectural style are:

• Domain alignment- Reuse of common services with standard interfaces

increases business and technology opportunities and reduces cost.

• Abstraction- Services are autonomous and accessed through a formal

contract, which provides loose coupling and abstraction.

• Discoverability- Services can expose descriptions that allow other

applications and services to locate them and automatically determine the

interface.

• Interoperability- Because the protocols and data formats are based on

industry standards, the provider and consumer of the service can be built

and deployed on different platforms.

• Rationalization.-Services can be granular in order to provide specific

functionality, rather than duplicating the functionality in number of

applications, which removes duplication.

49

SOFTWARE ARCHITECTURAL

BROKER PATTERNS (CONT…)

• In distributed component-based software design, the
component-based software architecture for the distributed
application is developed.

• The software application is structured into components, and the
interfaces between the components are defined.

• To assist with this process, guidelines are provided for
determining the components.

• Components are designed to be configurable so that each
component instance can be deployed to a different node in a
geographically distributed environment

50

Designing Component-Based

Software Architectures

• An important goal of a component-based software architecture is to provide a
concurrent message-based design that is highly configurable.

• In other words, the objective is that the same software architecture should be
capable of being deployed to many different distributed configurations.

• Thus, a given software application could be configured to have each
component-based subsystem allocated to its own separate physical node, or,
alternatively, to have all or some of its components allocated to the same
physical node.

• To achieve this flexibility, it is necessary to design the software architecture in
such a way that the decision about how components will be mapped to
physical nodes is not made at design time but is made later, at system
deployment time.

51

Designing Component-Based

Software Architectures (Cont…)

• A component-based development approach, in which each subsystem is
designed as a distributed self-contained component, helps achieve the goal of a
distributed, highly configurable, message-based design.

• A distributed component is a concurrent object with a well-defined interface,
which is a logical unit of distribution and deployment.

• A well-designed component is capable of being reused in applications other
than the one for which it was originally developed.

• A component can be either a composite component or a simple component.

• A composite component is composed of other part components.

• A simple component has no part components within it.

52

Designing Component-Based

Software Architectures (Cont…)

• A distributed application consists of distributed components that
can be configured to execute on distributed physical nodes.

• To successfully manage the inherent complexity of large-scale
distributed applications, it is necessary to provide an approach
for structuring the application into components in which each
component can potentially execute on its own node.

• After this design is performed and the interfaces between the
components are carefully defined, each component can be
designed independently.

53

Designing Distributed Component-based

Software Architectures (Cont…)

• The three main steps in designing a component-based software
architecture for a distributed application are:

• 1. Design distributed software architecture- Structure the
distributed application into constituent components that potentially
could execute on separate nodes in a distributed environment.

• Because components can reside on separate nodes, all
communication between components must be restricted to message
communication. The interfaces between components are defined.

• Additional component structuring criteria are used to ensure that the
components are designed as configurable components that can be
effectively mapped to physical nodes.

54

Designing Distributed Component-based

Software Architectures (Cont…)

• 2. Design constituent components- Because, by definition,
a simple component can execute on only one node, the
internals of each simple component can be designed by
means of a design method for sequential object-oriented
software Architectures.

• 3. Deploy the application- After a distributed application
has been designed, instances of it can be defined and
deployed.

•

• During this stage, the component instances of the
application are defined, interconnected, and mapped onto a
hardware configuration consisting of distributed physical
nodes. 55

Designing Distributed Component-based

Software Architectures (Cont…)

• A composite subsystem is a component and adheres to the
principle of geographical distribution.

• Thus, objects that are part of a composite subsystem must reside
at the same location, but objects in different geographical
locations are never in the same composite subsystem.

• A composite subsystem is a component that encapsulates the
internal components (objects) it contains.

• The component is both a logical and a physical container, but it
adds no further functionality; thus, a component’s functionality
is provided entirely by the part components it contains.

56

Composite Subsystems And

Components

• An interface specifies the externally visible operations

of a class or component without revealing the internal

structure (implementation) of the operations

• If different components use a component differently, it

is possible to design a separate interface for each

component that requires a different interface.

57

Design of Component Interfaces

• An example of a component that provides more than one
interface is Alarm Service.

• Two interfaces from the Emergency Monitoring System will be
used in the examples that follow.

• Each interface consists of one or more operations, as follows:

1. Interface: IAlarmService

Operations provided:

alarmRequest (in request, out alarmData)

alarmSubscribe (in request, in notificationHandle, out ack)

2. Interface: IAlarmStatus

Operation provided: post (in alarm)

3. Interface: IAlarmNotification

Operation provided: alarmNotify (in alarm)

58

Example

59

• An important activity in designing real-time software
architectures is to design concurrent objects, which are referred
to as concurrent tasks

• During concurrent software design, a concurrent software
architecture is developed in which the system is structured into
concurrent tasks, and the interfaces and interconnections
between the concurrent tasks are defined.

• To help determine the concurrent tasks, concurrent task
structuring criteria are provided to assist in mapping an object-
oriented analysis model of the system to a concurrent software
architecture.

60

Designing Concurrent and Real-

Time Software Architectures

• Real-time systems are concurrent systems with
timing constraints.

• They have widespread use in industrial, commercial,
and military applications.

• The term real-time system usually refers to the
whole system, including the real time application,
real-time operating system, and the real-time I/O
subsystem, with special-purpose device drivers to
interface to the various sensors and actuators.

61

Characteristics Of Real-time

Systems

• Real-time systems are often complex because they have to deal with multiple independent
streams of input events and produce multiple independent outputs.

• These events have arrival rates that are often unpredictable, although they must be subject to
timing constraints specified in the system requirements.

• Frequently, the order of incoming events is not predictable. Also, the input load might vary
significantly and unpredictably with time.

• Real-time systems are frequently classified as hard real-time systems or soft real time systems.

• A hard real-time system has time-critical deadlines that must be met to prevent a catastrophic
system failure. In a soft real-time system, missing deadlines occasionally is considered
undesirable but not catastrophic, so it can be tolerated.

62

Characteristics Of Real-time

Systems (Cont…)

• Many real-time systems have a control function.

•

• It describes the different kinds of control patterns
that could be used for this purpose: centralized
control patterns, distributed control patterns, and
hierarchical control patterns.

• To make the patterns applicable to component-based
software architectures as well as real time software
architectures, the «component» stereotype is used in
these patterns.

63

Control Patterns For Real-time Software

Architectures

• In the Centralized Control architectural pattern, there is one

control component, which conceptually executes a state-chart

and provides the overall control and sequencing of the system.

• The control component receives events from other components

with which it interacts. These include events from various

input components and user interface components that interact

with the external environment – for example, through sensors

that detect changes in the environment.

64

Control Patterns For Real-time Software

Architectures (Cont…)

• An input event to a control component usually causes a state

transition on its state chart, which results in one or more state-

dependent actions.

• The control component uses these actions to control other

components, such as output components, which output to the

external environment – for example, to switch actuators on and

off.

• Entity objects are also used to store any temporary data needed

by the other objects.

65

Control Patterns For Real-time Software

Architectures (Cont…)

• The Distributed Control pattern contains several control

components.

• Each of these components controls a given part of the system

by conceptually executing a state chart.

• Control is distributed among the various control components,

with no single component in overall control.

• To notify each other of important events, the control

components communicate through peer-to-peer

communication.

66

Distributed Control Architectural

Pattern

• They also interact with the external environment as in the

Centralized Control pattern.

• An example of the Distributed Control pattern is the control is

distributed among the several distributed controller

components.

• Each distributed controller executes a state machine, receiving

inputs from the external environment through sensor

components and controlling the external environment by

sending outputs to actuator components.

• Each distributed controller communicates with the other

distributed controller components by means of messages

containing events.
67

Distributed Control Architectural

Pattern

• The Hierarchical Control pattern (also known as the Multilevel
Control pattern) contains several control components.

• Each component controls a given part of a system by
conceptually executing a state machine. In addition, a
coordinator component provides the overall system control by
coordinating several control components.

• The coordinator provides high-level control by deciding the next
job for each control component and communicating that
information directly to the control component.

68

Hierarchical Control Architectural

Pattern (Cont…)

• The coordinator also receives status information from
the control components.

• One example of the Hierarchical Control pattern is the
Hierarchical Controller sends high-level commands to
each of the distributed controllers.

• The distributed controllers provide the low-level control,
interacting with sensor and actuator components, and
respond to the Hierarchical Controller when they have
finished.

• They may also send progress reports to the Hierarchical
Controller.

69

Hierarchical Control Architectural

Pattern

