
Software Design
Methodologies and

Testing
(Subject Code: 410449)

(Class: BE Computer Engineering)

2012 Pattern

• Course Objectives

– To understand and apply different design methods and techniques

– To understand architectural design and modeling

– To understand and apply testing techniques

– To implement design and testing using current tools and
techniques in distributed, concurrent and parallel

– Environments

• Course Outcomes

– To present a survey on design techniques for software system

– To present a design and model using UML for a given software
system

– To present a design of test cases and implement automated testing
for client server, distributed, mobile applications

Objectives and outcomes

2

• Teaching Scheme Lectures:

– 3 Hrs/Week

• Examination Scheme

– In Semester Assessment: 30

– End Semester Assessment : 70

3

Other Information

Concepts

Introduction to software Design,
Design Methods: Procedural and Structural Design
methods, Object Oriented design method, Unified
modeling language overview,
Static and Dynamic Modeling -Advance Use case,
Class, State, Sequence Diagrams

4

UNIT-I

UNIT-I

Concepts

• Introduction to software Design,

• Design Methods: Procedural and Structural
Design methods,

• Object Oriented design method, Unified
modelling Language overview,

• Static and Dynamic Modelling -Advance Use
case,

• Class, State, Sequence Diagrams

Contents

6

• Input of software design: Requirement analysis
models and specification document

• Output of software design: Design models and
design specification document

• Design-

– translates the requirements into a completed design
model for a software product.

– provides the representations of software that can be
assessed for quality.

Introduction to Software Design

(Cont…)

7

Stages of Design

• Problem understanding
– Look at the problem from different angles to discover the design

requirements.

• Identify one or more solutions
– Evaluate possible solutions and choose the most appropriate

depending on the designer's experience and available resources.

• Describe solution abstractions
– Use graphical, formal or other descriptive notations to

describe the components of the design.

• Repeat process for each identified abstraction
until the design is expressed in simple terms.

8

9

• A number of design methods can be used to
produce software design:

• Data design: transforms the information domain
model into data structures.

• Architecture design: defines the relationship
among major structural elements of the program.

• Interface design: describes how the software
communicates with users.

• Procedure design: transforms structural elements
of the program architecture into a procedural
description of software components.

Software Design Process (Cont…)

10

The Design Model
• Data Design

– Transforms information

domain model into data

structures required to

implement software

• Architectural Design
– Defines relationship among

the major structural

elements of a program

Procedural

Design

Interface Design

Architectural Design

Data Design

The Design Model

The Design Model

• Interface Design
– Describes how the software

communicates with itself, to

systems that interact with it

and with humans.

• Procedural Design
– Transforms structural

elements of the architecture

into a procedural

description of software

construction

Procedural

Design

Interface Design

Architectural Design

Data Design

The Design Model

• A software architecture separates the overall
structure of the system, in terms of components and
their interconnections, from the internal details of
the individual components.

• programming-in-the-large

• programming-in-the-small

• software architecture can be described at different
levels

• The software quality attributes of a system should
be considered when developing the software
architecture

software architecture

• Common features of software design

methods:

• - A mechanism for translation of an analysis

model into a design representation

• - A notation for representing functional

components and their interfaces

• - Heuristics for refinement and partitioning

• - Guidelines for quality assessment
14

Features of Software Design

The Design Process

• Mc Glaughlin’s suggestions for good

design:

– Design must enable all requirements of the

analysis model and implicit needs of the

customer to be met

– Design must be readable and an understandable

guide for coders, testers and maintainers

– The design should address the data, functional

and behavioral domains of implementation

15

Design Guidelines

• A design should exhibit a hierarchical

organization

• A design should be flexible

• A design should contain both data and

procedural abstractions

• Modules should exhibit independent

functional characteristics

• Interfaces should reduce complexity

• A design should be obtained from a

repeatable method, driven by analysis
16

• Procedural Design

• Transforms structural elements of the architecture into
a procedural description of software construction

• A design methodology combines a systematic set of
rules for creating a program design with diagramming
tools needed to represent it.

• Procedural design is best used to model programs that
have an obvious flow of data from input to output.

• It represents the architecture of a program as a set of
interacting processes that pass data from one to another.

Design Methods: Procedural

17

• A data flow diagram (DFD) is a graphical

representation of the "flow" of data through

an information system, modelling

its process aspects.

• A DFD is often used as a preliminary step to

create an overview of the system, which can

later be elaborated.

Design Methods: Procedural

18

Data Flow Diagrams (DFD)

• DFDs describe the flow of data or

information into and out of a system

– what does the system do to the data?

• A DFD is a graphic representation of the

flow of data or information through a

system

19

• Objectives:

• To explain how a software design may be
represented as a set of interacting objects
that manage their own state and operations

• To describe the activities in the object-
oriented design process

• To introduce various models that can be
used to describe an object-oriented design

• To show how the UML may be used to
represent these models

20

Object Oriented Design Methods

Object-oriented development

• Object-oriented analysis, design and programming are

related but distinct.

• OOA is concerned with developing an object model of the

application domain.

• OOD is concerned with developing an object-oriented

system model to implement requirements.

• OOP is concerned with realising an OOD using an OO

programming language such as Java or C++.

21

Characteristics of OOD

• Objects are abstractions of real-world or system entities

and manage themselves.

• Objects are independent and encapsulate state and

representation information.

• System functionality is expressed in terms of object

services.

• Shared data areas are eliminated and Objects

communicate by message passing.

• Objects may be distributed and may execute

sequentially or in parallel.

22

Advantages of OOD

• Easier maintenance. Objects may be

understood as stand-alone entities.

• Objects are potentially reusable

components.

• For some systems, there may be an obvious

mapping from real world entities to system

objects.

23

• A software design notation is a means of

describing a software design either graphically

or textually, or both. For example, class

diagrams

• A software design concept is a fundamental

idea that can be applied to designing a system.

For example, information hiding is a software

design concept.

24

METHOD AND NOTATION

• A UML-BASED SOFTWARE MODELING AND
DESIGN METHOD FOR SOFTWARE
APPLICATIONS

• uses the UML

• COMET is based on the design concepts of information
hiding, classes, inheritance, and concurrent tasks

• COMET is an iterative use case driven and object-
oriented software development method that addresses
the requirements, analysis, and design modeling phases
of the software development life cycle.

25

Collaborative Object Modeling and

Design Method, or COMET

• Use case view
• To develop s/w architecture

• Static view
• Classes & relationships

• Dynamic interaction view
• Objects & messages

• Dynamic state machine view
• State machine

• Structural component view
• components & interconnections

• Dynamic concurrent view
• Concurrent components executing on distributed nodes, and communicating by messages

• Deployment view
• specific configuration of the distributed architecture with components assigned to

hardware nodes

26

MULTIPLE VIEWS OF

SOFTWARE ARCHITECTURE

What is UML?

• Standard language for specifying, visualizing, constructing,
and documenting the artifacts of software systems, business
modeling and other non-software systems.

• The UML represents a collection of best engineering practices
that have proven successful in the modeling of large and
complex systems.

• The UML is a very important part of developing object
oriented software and the software development process.

• The UML uses mostly graphical notations to express the
design of software projects.

• Using the UML helps project teams communicate, explore
potential designs, and validate the architectural design of the
software.

Overview of UML Diagrams

Structural
: element of spec. irrespective of time

• Class

• Component

• Deployment

• Object

• Composite structure

• Package

Behavioral
: behavioral features of a system / business
process

• Activity

• State machine

• Use case

• Interaction

Interaction
: emphasize object interaction

• Communication(collaberati
on)

• Sequence

• Interaction overview

• Timing

Structural Modeling

Classes

• Modeling a system involves identifying the things

that are important to your particular view. These

things form the vocabulary of the system you are

modeling.

• In the UML, all the things are modeled as classes.

• A class is an abstraction of the things that are a

part of your vocabulary. It is not a individual

object, but represents a whole set of objects.

• Many programming languages directly support

the concept of class.

Classes

• The UML provides graphical representation of class.

•
Name

Attribute

Operations

Terms and Concepts

• A class is a description of a set of objects that share the
same attributes, operation, relationships and semantics.

• Name: Every class must have a name that distinguishes
it from other classes. It is called” Simple Name”

• Path Name: It is class name prefixed by the name of
the package in which that class lives.

• Attributes: It is a named property of a class that
describes a range of values that instance of the property
may hold. Attribute represents some property of the
thing you are modeling that is shared by all objects of
that class.

• An attribute is an abstraction of the kind of data or state
an object of the class might encompass.

Wall

Height: Float

Width : Float

Thickness:Float

Attributes and their classes

Temperature sensor

reset()

setAlarm(t: Temperature)

Value():Temperature

Operations and their signatures
Fraud Agent

Responsibilities

-- determine risk of a

customer order

--handle customer specific

criteria for fraud.

Responsibilities

Terms and Concepts

• Operations: It is the implementation of a service that can
be requested from any object of the class to affect
behavior. It is an abstraction of something you can do to
an object and that is shared by all objects of that class.

• Responsibilities: It is a contract or an obligation
(responsibility) of a class. All objects of the class have
the same kind of state and behavior. These corresponding
attributes and operations are just features by which these
class’s responsibilities are carried out. When you model
classes , a good starting point is to specify the
responsibilities of the things in your vocabulary.

• Graphically , responsibilities can be drawn in a separate
compartment at the bottom of the class icon.

Common Modeling Techniques

• To model the vocabulary:

– Identify those things that users or implementers use to

describe the problem or solution. Use CRC cards and use

case base analysis to help find these abstractions.

– For each abstraction, identify a set of responsibilities.

Make sure that each class is crisply defined and that there

is a good balance of responsibilities among all your

classes.

– Provide attributes and operations that are needed to carry

out these responsibilities for each class.

Common Modeling Techniques

• Modeling the Distribution of Responsibilities in a System

– Identify a set of classes that work together closely to
carry out some behavior.

– Identify a set of responsibilities for each of these
classes.

– Look at this set of classes as a whole, split classes that
have too many responsibilities into smaller
abstractions, collapse tiny classes that have trivial
responsibilities into larger ones, and reallocate
responsibilities so that each abstraction reasonably
stands on its own.

– Consider the ways in which those classes collaborate
with one another and redistribute their responsibilities
accordingly so that no class with a collaboration does
too much or too little.

Common Modeling Techniques

• Modeling Nonsoftware Things:

– Model the thing you are abstracting as a class.

– If you want to distinguish these things from the UML’s

defined building blocks, create new building block by

using stereotypes to specify these new semantics and to

give a distinctive visual sign.

– If the thing you are modeling is some kind of hardware

that itself contains software, consider modeling it as a

kind of node, as well , so that you can further expand

on its structure.

Common Modeling Techniques

• Modeling Primitive Types

– Model the thing you are abstracting as a type or an

enumeration , which is rendered using class notation with

the appropriate stereotype.

– If you need to specify the range of values associated with

this type , use constraints.

Relationship

• In object oriented modeling, there are three kinds of

relations that are especially important.

• Dependencies, which represent using relationships

among classes

• Generalizations, which link generalized classes to their

classes to their specialization.

• Associations, which represent structural relationship s

provides a different way of combining your abstraction.

Terms and Concepts

• A relationship is a connection among things. In

object oriented modeling, the three most important

relationships are dependencies, generalizations and

associations.

• Graphically, a relationship is rendered as a path,

with different kinds of lines used to distinguish the

kinds of relationships.

• Dependency:

– It is using relationship that state change in specification

one thing may affect another thing that uses it.

– Graphically, it is rendered as a dashed directed line,

directed to the thing being dependant on.

• Generalization:

– It is relationship between a general thing and more
specific kind of that thing.

– It is “ is-a-kind-of” relationship i.e. one is a kind of a
more general thing.

– It means that objects of child may be used anywhere the
parent may appear . The child is substitutable for the
parent. A child inherits properties of its parents . Child
has attributes and operations in addition to those found
in its parent.

– An operation of a child that has the same signature as as
an operation in a parent overrides the operation of parent.
This is called as “Polymorphism”

– Class may have 0,1 or more parents. A class that has no
parents and 1 or more children is called “root class”. A
class that has no children is called a “leaf class”.

Terms and Concepts

• Association :

– It is a structural relationship that specifies that objects of
one thing are connected to objects of another. You can
navigate from an object of one class to an object of other
class and vice versa.

– Association which connects exactly two classes is called
a “binary association” while associations which connects
more than two classes are called “n-ary association.”

– An association rendered as a solid line connecting the
same or different classes

– Name: An association can have a name and you use that
name to describe the nature of the relationship. Direction
to the name can be provided by direction triangle that
points in the direction you intend to read the name.

• Association :

– Role: When a class participates in an association, it has
a specific role that it plays in that relationship. It is just
the face the class at the near end of the association
presents to the class at other end of association.

– Multiplicity: An association represents a structural
relationship among objects. In many modeling
situations, it is important for you to specify how many
objects may be connected across an instance of an
association. “ How-many” is called the multiplicity of
an association’s role and is written as an expression
that evaluates to a range of values or an explicit value.

– You can show a multiplicity of exactly one(1), zero or
one (0 .. 1), many (0..*) or one or more (1..*) or exact
number.

• Association :

– Aggregation: You will want to model a “whole/part”

relationship, in which one class represents a larger thing,

which consists of smaller things. This kind of

relationship is called “ Aggregation”.

– It represents a “has-a” relationship.

– It is just a special kind of association and is specified by

adorning a plain association with open diamond at the

whole end.

Common Modeling Techniques

• Modeling simple Dependencies:

– Create a dependency pointing from the class with the
operation to the class used as a parameter in the
operation.

• Modeling Single Inheritance:

– Given a set of classes , look for responsibilities, attributes
and operations that are common to 2 or more classes.

– Elevate these common responsibilities, attributes and
operations to a more general class. If necessary create a
new class to which you can assign these elements.

– Specify that the more-specific classes inherit from the
more general class by placing a generalization
relationship that is drawn from each specialized class to
its more-general parent.

Common Modeling Techniques

• Modeling Structural Relationships:

– For each pair of classes, if you need to navigate from
objects of another, specify an association between the
two. The data driven view of association.

– For each pair of of classes, if objects of one class need to
interact with the objects of the other class other than as
parameters to an operation , specify an association
between the two.This is more behavioral view of
association.

– For each of these associations, specify a multiplicity, as
well as role name.

– If one of the classes in an association is structurally or
organizationally a whole compared with the classes at the
other end that look like parts, mark this as an aggregation
by adorning the association at the end near the whole.

Common Mechanisms

• The UML is made simpler by the presence of four common

mechanisms that apply consistently throughout the

language. i.e. Specifications, adornments, common

divisions, extensibility mechanism.

• Notes are the important kind of adornment that stands alone.

• The UML’s extensibility mechanism permit you to extend

the language in controlled ways which includes stereotypes,

tagged values and constraints.

Terms and Concepts

• Note: It is a graphical symbol for rendering constraints or
comments attached to an element or a collection of
elements. Graphically, it is rendered as a rectangle with a
dog-eared corner , together with a textual or graphical
comment.

• A note that renders comment has no semantics impact.

• If your implementation allows, you can put live URL
inside a note .

• Stereotypes: It is an extension of the vocabulary of the
UML, allowing you to create new kinds of building
blocks similar to exiting one. But specific to your
problem.

• It is rendered as a name enclosed by guillemets and place
above the name of another element.Stereotype is a meta
type.

• With stereotype , you can add new things to the UML.

• Tagged Values: It is an extension of the properties of a
UML, allowing you to create new information in that
element’s specification. Graphically, it is rendered as a
string enclosed by brackets and placed before name of
another element.

• Tagged values can add new properties.You can define tags
for existing elements in UML or you can apply them to
individual stereotype.

• Tagged value is not same as a class attribute.

• Constraints: It is an extension of the semantics of a UML
element, allowing you to add new rules or to modify
existing ones.. Graphically, it is rendered as a string
enclosed by brackets and placed near the associated
element or connected to that element or elements by
dependency relationships.

Common Modeling Techniques

• Modeling Comment:

– Put your comments as text in a note and place it adjacent to
the element to which it refers. You can show a more explicit
relationship by connecting a note to its elements using a
dependency relationship.

– Remember that you can hide or make visible the elements of
your model as you see fit. This means that you don’t have to
make your comments visible everywhere the elements to
which it is attached are visible.

– If your comment is lengthy or involves something richer than
plaintext, consider putting your comment in an external
document and linking embedding that documents in a note
attached to your model.

– As your model evolves, keep those comments that record
significant decisions that cannot be inferred from the model
itself, and they are of historic interest- discard the others.

Common Modeling Techniques

• Modeling New Building Blocks:

– Make sure there is not already a way to express what you
want by using basic UML. If you have a common
modeling problem, chances are there’s already some
standard stereotype that will do what you want.

– If you are convinced there’s no other way to express
these semantics, identify the primitive thing in UML
that’s most like what you want to model and define new
stereotype for that thing.

– Specify the common properties and semantics that go
beyond the basic element being stereotyped by defining a
set of tagged values and constraints for the stereotype.

– If you want these stereotype elements to have a
distinctive visual cue, define a new icon for the
stereotype.

Common Modeling Techniques

• Modeling New Properties:

– Make sure there’s not already a way to express what you

want by using basic UML. If you have a common

modeling problem, chances are that there is already some

standard tagged value that will do what you want.

– If you are convinced there’s no other way to express

these semantics , add this new property to an individual

element or a stereotype. The rules of generalization

apply- tagged values defines for one kind of element

apply to its children.

Common Modeling Techniques

• Modeling New Semantics:

– Make sure there is not already a way to express what you

want by using basic UML. If you have common

modeling problem , chances are that there’s already some

standard constraint that will do what you want.

– If you are convinced there is no other way to express

these semantics, write your as text in a constraint and

place it adjacent to the element to which it refers. You

can show a more explicit relationship by connecting a

constraint to its elements using a dependency

relationship.

– If you need to specify your semantics more precisely and

formally, write your new semantics using OCL.

Diagrams
• Diagrams are the means by which you view these building

blocks . It is a graphical representation of a set of elements,
most often rendered as a connected graph of vertices and
arcs. You use diagrams to visualize your system from
different perspectives. Because no complex system can be
understood in its entirely from only one perspective , the
UML defines a number of diagrams so that you can focus
on different aspects of your system independently.

• In the context of software , there are five complementary
views that are most important in visualizing, specifying,
constructing and documenting a software architecture.:

– 1) Use Case View 2)Design View 3) Process View

– 4) Implementation View 5) Deployment View

Terms and Concepts

• A system is a collection of subsystems organized to
accomplish a purpose and describe by a set of models,
possibly from diff. View points.

• A subsystem is a grouping of elements, of which some
constitute a specification of the behavior offered by the
other contained elements.

• A model is a semantically closed abstraction of a system,
meaning that it represents a complete and self consistent
simplification of reality, create in order to better understand
the system.

• In modeling real systems, no matter what the problem
domain, you will fine yourself creating the same kind of
diagrams, because they represent common views into
models .

• The static part of a system can be view by using one of the
four following diagrams.

– Class Diagram

– Object Diagram

– Component Diagram

– Deployment Diagram

• Additional five diagrams can be used to view the dynamic
parts of the system.

– Use case Diagram

– Sequence Diagram

– Collaboration Diagram

– State chart Diagram

– Activity Diagram

Structural Diagrams

• Class Diagram:It shows classes , interfaces and

collaborations and their relationships. It illustrate the static

design view of a system.

• Object Diagram: It shows a set of objects and their

relationships. It illustrates data structures, the static

snapshots of instances of the things found in class diagram.

• Component Diagram: It shows set of components and

relationships. It illustrates the static implementation view of

the system.

• Deployment Diagram: It shows set of nodes and their

relationship. It illustrates the static deployment view of an

architecture.

Behavioral Diagram

• Use Case Diagram: It shows a set of use cases and actors
and their relationship. It illustrates the static use case view
of a system.

• Interaction Diagram: It is the collective name given to
sequence diagrams and collaboration diagrams

• Sequence Diagram: It is an interaction diagram that
emphasizes on the time ordering of messages. It shows a set
of objects and the message sent and received by those
objects. It illustrates the dynamic view of a system.

• Collaboration Diagram: It is an interaction diagram that
emphasizes the structural organization of objects that send
and receive messages.It shows set of objects ,links among
those objects and messages sent and received by those
objects. It also illustrates the dynamic view of a system.

Behavioral Diagram

• State Chart Diagram: It shows state machine, consisting of

states, transitions, events and activities. It illustrates the

dynamic view of a system. They are important in modeling

the behavior of an interface, class or collaboration. It

emphasize the event ordered behavior of an object, which is

especially useful in modeling reactive systems.

• Activity Diagram: It shows the flow from activity to activity

within system. It shows a set of activities, the sequential or

branching flow from activity to activity and objects that act

and acted upon. It illustrates the dynamic view of a system.

They are important in modeling the function of a system.

Activity diagrams emphasize the flow of control among

objects.

Class Diagrams

• These are the most common diagrams found in modeling
object –oriented systems. A class diagram shows a set of
classes, interfaces and collaborations and their relationships.

• Class diagrams are used to model the static design view of a
system. These are also the foundation for a couple of related
diagrams: component, deployment

• These are not only important for visualizing, specifying and
documenting structural models, but also for constructing
executable systems through forward and reverse
engineering.

• It shows classes , interfaces and collaborations and their
relationships.

• Graphically, it is a collection of vertices and arcs.

• Common Properties: A class diagram is a special kind of diagrams

and shares the same common properties as do all other diagrams- a

name and graphical content that are a projection into a model.

• Class diagrams commonly contain the following things:

– Classes

– Interfaces

– Collaborations

– Dependency, Generalization and association relationships

• Class diagram is used model the static view of a system. This view

primarily supports the functional requirement of a system- the services

the system should provide to its end users.

• Class diagram can be use in one of the three ways.

– To model the vocabulary

– To model simple collaboration

– To model a logical database schema

Common Modeling Techniques

• Modeling Simple Collaborations:

– Identify the mechanism you would like to model. A

mechanism represents some function or behavior of the

part of the system you are modeling that results from

interaction of a society of classes, interfaces and others.

– For each mechanism identify classes, interfaces and

other collaborations that participate in this collaboration.

Identify the relationships among these things.

– Use scenario to walk through these things.

– Be sure to populate these elements with their contents.

• Modeling a Logical Database Schema:

– Identify those classes in your model whose state must

transcend the life time of their applications.

– Create class diagram that contains these classes and mark

them as persistent.

– Expand the structural details of these classes.

– Watch for common patterns that complicate physical

database design.

– Consider also the behavior of these classes by expanding

operations that are important for data access and data

integrity.

– Where possible, use tools to help you transform your

logical design into a physical design.

Forward and Reverse Engineering

• Forward Engineering: It is the process of transforming a

model into code through mapping to an implementation

language. It results in a loss of information.

• To forward Engg. A class diagram:

– Identify the rules for mapping to your implementation

language.

– Depending on the semantics of the languages you choose,

you may have constrain your use of certain UML

features.

– Use tagged values to specify your target language.

– Use tools to forward engineer your models.

• Reverse Engineering: It is the process of transforming code

into a model through a mapping from a specific

implementation language.

• To reverse engineer a class diagram:

– Identify the rules for mapping from your

implementation language.

– Using tool, point to the code you would like to reverse

engineer.

– Using your tool, create class diagram by querying the

model.

Interfaces , Types and Roles

• An interface is a collection of operations that are used to
specify a service of a class or a component. We use
interface to visualize, specify, construct and document the
seams within our system.

• Types and roles provide a mechanism for us to model the
static and dynamic conformance of an abstraction to an
interface in a specific context.

• An interface is a collection of operations that are used to
specify a service of a class or a component.

• A type is a stereotype of a class used to specify a domain of
objects, together with operation.

• A role is a behavior of an entity participating in a particular
context.

• Every interface must have a name that distinguishes it from

other interfaces. A name is textual string. That name alone

is known as a simple name; a path name is the interface

prefixed by the name of the package in which that interface

lives.

• Operations: An interface is a named collection of operations

used to specify service of a class or component. An

interface may have any number of operations. These may be

adorned with visibility properties, concurrency properties,

stereo type, tagged values and constraints.

• Relationship :An interface may participate in generalization,

association and dependency relationships. It may participate

in realization relationships. Realization is a semantic

relationship between two classifiers in which one specifies a

contract that another classifier guarantees to carry out.

Types and Roles

• A class may realize many interfaces. An instances of that

class must therefore support all those interfaces, because an

interface defines a contract, and any abstraction to that

interface must carry out that contract. In a given context ,an

instance may present only one or more of its interfaces as

relevant. In that case, each interface represents a role that

the object plays. A role names a behavior of an entity

participating in a particular context.

Packages

• Visualizing, specifying, constructing and documenting

large systems involves manipulating potentially large

number of classes, interfaces, components, nodes, diagrams,

and other element.

• In the UML, the package is a general purpose mechanism

for organizing modeling elements into groups.

• We can use packages to arrange our modeling elements into

larger chunks that can manipulate as a group.

• Graphically, a package is rendered as a tabbed folder.

Sensor Fusion

name

• Names: A name is textual string. Name distinguish one
package from other packages. That name alone is known as
a simple name; a path name is the interface prefixed by the
name of the package in which that package lives.

• Owned Element: A package may own other elements,
including classes, interfaces, components, nodes,
collaborations, use cases, diagrams and even other
packages.. Owing is a composite relationship, which means
that elements is declared in the package . If the package is
destroyed, the element is destroyed. Every element is
uniquely owned by exactly one package.

• A package forms a namespace , which means that elements
of the same kind of must be named uniquely within the
context of its enclosing package.

• Different kinds of elements may have the same name.
Elements of different kinds may have the same name within
a package.

• Visibility:Typically, an element owned by a package is

public, which means that is visible to the contents of any

package that imports the elements enclosing package.

Private elements can only be seen by children and private

elements cannot be seen outside the package in which they

are declared.

• Prefix + for public element

• Prefix – for protected or private element.

• Generalization: Two kinds of relationships between

packages : import and access dependencies used to import

into one package one elements export from another, and

generalizations used to specify families of packages.

• Standard Elements: All of the UML’s extensibility
mechanisms apply to packages. We will use tagged values
to add new package properties and stereotypes to specify
new kinds of packages.

• Following are five standard stereotypes that apply to
packages.

façade - Specifies a package that is only a view on some other

package.

framework- Specifies a package mainly of patterns

stub- Specifies a package that serves as a proxy for the public

contents of another package.

subsystem – Specifies a package representing an independent part

of entire system being modeled.

system- Specifies a package representing the entire system being

modeled.

Common Modeling Techniques

• Modeling Groups of Elements:

– Scan the modeling elements in particular architectural
view and look for clumps defined by elements that are
conceptually or semantically close to one another.

– Surround each of these clumps in a package.

– For each package, distinguish which elements should be
accessible outside the package. Mark them public and all
others protected or private.

– Explicitly connect packages that build on others via
import dependencies.

– In the case of families of packages, connect specialized
packages to their more general part via generalization.

• Modeling Architectural views:

– Identify the set of architectural views that are significant

in the problem Typically includes a design view, a

process view, an implementation view, a deployment

view and a use case view.

– Place elements that are necessary and sufficient to

visualize, specify, construct and document the semantics

of each view into appropriate package.

– As necessary, further group these elements into their own

package.

– There will typically dependencies across the elements in

diff. Views.

Instances
• An instance is a concrete manifestation of an

abstraction to which set of operations may be

applied and which may have a state that stores the

effects of the operation

• Instance and objects are largely synonymous.

• Graphically instance is rendered by underlining its

name.

Keystroke:Queue

: Frame

Named instance

Anonymous

instance

• Abstraction and Instances: Instances are almost always

always tied to an abstraction.Most of the instances we

model are of classes , but we can have instances of other

things as components, associations etc.

• In UML, instances can be easily distinguishable from an

abstraction. To, indicate instances we do underline to its

name.

• We can use UML to model physical instances as well as

things which are not so concrete. We can model indirect

instances of abstract classes in order to show use of a

prototypical instance of that abstract classes.

• The classifier of instance is usually classic.

• Names: Every instance must have a name that distinguishes

it from other instances within its context. The name is

textual string. An object lives within the context of an

operation , a component or a node.

• The name alone is called “simple name”.

• The abstraction of the instance may be a simple name or it

may be a path name which is the abstractions name prefixed

by the name of the package in which abstraction lives.

t:Transaction myCustomer :Multimedia::Audiostream

:Keycode Agent: Orphan

instance

Multiple

Named instance

Anonymous

instance

• Operations: Not only an object takes up space in the real

world , it also something you can do things to. The

operations we can perform on an object are declared in the

objects abstraction.

• State: An object also has state , which in this sense

encompasses all the properties of the object plus the current

values of each of these properties. These properties include

attributes of the object , as well as all its aggregate parts.

• An object’s state is therefore dynamic.

myCustomer

Id:SSn=“432-89”

Active=TRUE

C:Phone

[WaitingForAnswer]

Instance with

attribute values

Instance with

explicit state

• Standard Elements: We can not stereotype an instance directly ,
nor we can give it its own tagged values. An object’s stereotype
and tagged values derive from stereotype and tagged values of
its associated abstraction.

• The UML define two standard stereotypes that apply to
dependency relationship among objects and among classes.

instanceof Specifies that client object is instance of
supplier classifier.

instantiate Specifies that client class creates instance of

supplier class.

• The UML define two stereotypes related to objects that apply
messages and transitions

become specifies that the client is the same object as the

supplier , but at later time and with possibly diff.
Values, state, or roles.

copy Specifies that client object is an exact but
independent copy of the supplier

Common Modeling Techniques

• Modeling Concrete Instances:

– Identify those instances necessary and sufficient to

visualize, specify, construct, or document the problem.

– Render these objects in the UML as instances. Where

possible give each object a name.

– Expose the stereotype, tagged values and attributes of

each instance necessary and sufficient to model.

– Render these instances and their relationships in an

object diagram or other diagram appropriate to the kindof

instances.

• Modeling Prototypical Instances:

– Identify those Prototypical instances necessary and

sufficient to visualize, specify, construct, or document the

problem.

– Render these objects in the UML as instances. Where

possible give each object a name.

– Expose properties of each instance necessary and

sufficient to model our problem.

– Render these instances and their relationships in an

interaction diagram or an activity diagram.

Object Diagrams

• Object diagram model the instances of things contained in
class diagram. It shows a set of objects and their
relationships at a point in time.

• Object diagrams are used to model the static design view or
static process view of a system.

• Graphically, it is collection of vertices and arcs.

• An object diagram is a special kind of diagram and shares
the same common properties as all other diagrams- as name,
graphical contents that are a projection into a model.

• Object diagrams commonly contain

– Objects

– Links

It can have note and constraints. It may also contain
packages or subsystems.

Common Modeling Techniques

• Modeling Object Structure:

– Identify mechanism you would like to model. A mechanism
represents some function or behavior of part of the system
you are modeling that results from interaction of a society of
classes , interfaces and others.

– For each mechanism, identify the classes, interfaces and
other elements that participate in this collaboration; identify
the relationships among these things as well.

– Consider one scenario that walks through this mechanism,
Freeze it at a moment in time and render each object that
participates in mechanism.

– Expose the state and attribute values of each such object to
understand the scenario.

– Expose links among these objects, representing instances of
associations among them.

Behavioral Modeling

Interactions

• An interaction is a behavior that comprises a set of

messages exchanged among a set of objects within a context

to accomplish a purpose.

• We can model each interaction in two ways:

– By emphasizing its time ordering of messages

– By emphasizing its sequencing of messages in the context of some

structural organization of object.

• Well structured interactions are like well structured

algorithms-efficient, simple, adaptable and understandable.

• A message is a specification of a communication between

objects that conveys information with the expectation that

activity will proceed.

Terms & Concepts

• Context: We may find interaction whenever objects are

linked to one another. We will find interactions in the

collaboration of objects that exist in the context of our

system or subsystem, in the context of an operation or in the

context of class.

• Object & Roles: The objects that participate in an

interaction are either concrete things or prototypical things.

• Links: A link is semantic connection among objects.

Whenever there is link between two objects, one object can

send a message to the other object. A link specifies path

along which one object can dispatch a message to another

• We can adorn the appropriate end of the link with any of the
following stereotypes.

association: Specifies that the corresponding object is

visible by association.

self: Specifies that the corresponding object is visible

because it is the dispatcher of the operation.

global: Specifies that corresponding object is visible because

it is in an enclosing scope.

local : Specifies that the corresponding object is visible
because it is in local scope.

parameter: Specifies that the corresponding object is visible

because it is a parameter.

• Message:

– Object diagram models the state of society of objects at

a given moment in time and are useful when want to

visualize.

– It is necessary to model the changing state of objects

over a period of time.

– Consider a motion picture set of objects , each frame

representing a successive moment in time. Objects are

passing messaging to other objects, sending events and

invoking operations.

– A message is the specification of a communication

among objects that conveys information with the

expectation that activity will ensure.

– The receipt of a message instance may be considered an

instance of an event.

– When you pass a message, the action that results is an

executable statement that forms an abstraction of a

computational procedure.

– Action may result in a change in state.

– In the UML, several kinds of actions can be modeled.

• Call- Invokes operation on an object. Object can

send message to itself, resulting local invocation of

operation.

• Return- return a value to caller.

• Send- Sends signal to an object.

• Create-Creates an object.

• Destroy- Destroys an object.

C: Client P: PlanningAssistant

:Ticketagent

Object

“Create”

Setltinerary(i) calculateRoute()

route

“Destroy”

Call

(Local

invocation)

create

actual

parameter

return

return

value

call

destroy

send

Notify()

• Sequencing:

– When object passes a message to another object , the

receiving object might in turn send a message to

another object, which might send a message to another

object and so on.

– This stream of message forms a sequence.

– Any sequence have a beginning; start of every sequence

is rooted in some process or thread.

– Any sequence will continue as long as the process or

thread that owns it lives.

– A nonstop system, will continue to execute as long as

the node it runs on is up.

– Each process and thread in system defines distinct flow

of control and within each flow, messages are ordered

in sequence by time.

– To better visualize the sequence of a message ,

explicitly model the order of the message relative to the

start of the sequence by prefixing the message with a

sequence number set apart by a colon separator.

• Creation, Modification & Destruction:

– Many times, the object participating in interaction exist

for the entire duration of the interaction..

– In some interactions, objects may be created and

destroyed .

– The same is true for links.

– To specify if an object or link enters and /or leaves

during an interaction, following constraint can be

attached

• New- specifies that the instance or link is created during

execution of the enclosing interaction

• Destroyed-specifies that the instance or link is destroyed prior

to completion of execution of the enclosing interaction

• transient -specifies that the instance or link is created during

execution of the enclosing interaction but is destroyed before

completion of execution.

• Representation:

– Objects and messages involved in an interaction in two

ways

• By emphasizing the time ordering of its messages- sequence

diagram

• By emphasizing the structural organization of the objects that

send and receive the messages- collaboration diagram

• Common modeling techniques:

– To model a flow of control
– Set the context for the interaction, whether it is the system as a whole ,

a class or an individual operation.

– Set the stage for interaction by identifying which object play a role.

Set their initial properties, including their attribute values , state and

role.

– If your model emphasizes the structural organization of these objects,

identify the links that connect them, relevant to the paths of

communication that take place in this interaction. Specify the nature of

the links using the UML’s standard stereotypes and constraints.

– In time order, specify the messages that pass from object to object. As

necessary, distinguish the different kinds of messages; include

parameters and returns values to convey the necessary detail of

interaction.

– Also to convey the necessary detail of this interaction, adorn each

object at every moment in time with its sate and role

Use cases
• Every interesting system interacts with human or

automated actors that use that system for some

purpose.

• A use case specifies the behavior of a system or a

part of a system and is a description of a set of

sequences of actions, including variants, that a

system performs to yield an observable result of

value to an actor.

• Use case are used to capture the intended behavior

of the system developing, without having to specify

how that behavior is implemented.

• Use cases provide a way for developers to come to

a common understanding with the systems end

users and domain experts.

• Use case can serve to help validate architecture of

system and to verify system as it evolves during

development.

Terms and concepts

• A use case is a description of a set of sequences of

action, including variants, that a system performs

to yield an observable result of a value to an actor.

• Names: Every use case must have name that

distinguishes it from other use cases. A name is

textual string. A name alone is simple name; a

path name the use case name prefixed by the name

of the package in which that use case lives.

Place holder Sensors: Calibrate

location

• Use cases and Actors:

– An actor represents a coherent set of roles that

users of use cases play when interacting with

use cases.

– Actor represents a role that a human , hardware

device or even another system plays with a

system.

– An instance of an actor represents an individual

interacting with the system in a specific way.

– Actors are rendered as stick figures. Define

general kind of actors and specialize them using

generalization relationship is possible.

– Actors are connected to use cases only by

association

• An association indicates that the actor and use

case communicate with one another, each one

possibly sending and receiving messages.

Customer

Commercial Customer

Generalization

• Use case and Flow of events:

– A use case describes what a system does but it

does not specify how it does it.

– The behavior of use case can be specified by

describing a flow of events in text clearly

enough for an outsider to understand it easily.

– While writing flow of events, include how and

when the use case starts and ends, when the use

case interacts with actors and what objects are

exchanged and the basic flow and alternative

flows of the behavior.

• Use case and Scenarios:

– It is necessary to use interaction diagrams to

specify the flow of events graphically.

– One sequence diagram to specify a use case’s

main flow and variations of that diagram

specify a use case’s exceptional flow.

• Use case and Collaboration:

– A use case captures the intended behavior of

the system we are developing, without having

to specify how that behavior is implemented.

– Use case are implemented by creating society

of classes and other elements that work together

to implement the behavior of use case.

• This society of elements including static and

dynamic structure is modeled in the UML as a

collaboration.

Place order

Order

Management

Collaboration
Use case

realization

• Organizing Use Cases:

– Use cases can be organized by grouping them

in packages in the same manner as we organize

classes.

– Use cases can be also organized by specifying

generalization , include and extend

relationships among them

– Apply these relationships in order to factor

common behavior and in order to factor

invariants.

Place order
Extension points

set priority

<<extend>>

(set priority)
Place rush

order

Track order

Validate user

Retinal scan

Check

password

<<include>>

<<include>> generalizatio

n

Common Modeling Techniques

• Modeling the behavior of an element:

– Identify the actors that interact with the element.

Candidate actors include groups that require certain

behavior to perform their tasks or that are needed

directly or indirectly to perform the element’s function.

– Organize actors by identifying general or more

specialized roles.

– For each actor consider the primary ways in which that

actor interacts with the element. Consider also the

change that state of the element or its environment or

that involve a response to some event.

• Consider also the exceptional ways in which each actor

interacts with element.

• Organize these behaviors as use cases, applying include

and extend relationships to factor common behavior and

distinguish exceptional behavior.

Place order

Ship order

Validate

customer

Bill

Customer

Track

order

Ship partial

order

<< include>>

<< include>>

<< include>>

<< extent>>
Extension points

material ready

Use Case Diagrams

• The UML has 5 diagrams for modeling dynamic

aspects of systems.

• Use case diagrams

• Activity diagrams

• Statechart diagrams

• Sequence diagrams

• Collaboration diagrams

• Use case diagrams central to modeling the

behavior of a system, a subsystem or a class.

• Each shows a set of use cases and actors and their

relationship.

• Use case diagrams are applied to model the use

case view of a system.

• Use case diagrams are important for visualizing,

specifying and documenting the behavior of an

element.

• They make systems, subsystems and classes

approachable and understandable by presenting

outside view of how those elements may be used

in context.

• Use case diagrams are also important for testing

executable systems through forward engineering

and for comprehending executable systems

through reverse engineering.

A use case diagram is a diagram that shows a set of

use cases and actors and their relationships.

Common Properties

• A use case diagram is just a special kind of

diagram and shares the same common properties

as do all other diagrams- a name and graphical

contents that are a projection into a model.

• Contents:

– Use case diagrams commonly contain

• Use cases

• Actors

• Dependency, generalization and association

relationship

• Use case diagrams may contain notes and

constraints

Common Properties

• Use case diagrams may also contain packages,

which are used to group elements of model into

larger chunks.

• Common Uses:

– Use case diagrams can be applied to model the static

use case view of a system

– Use case diagrams can be applied in one of the two

ways.

• To model the context of a system

• To model the requirements of a system

Common Modeling Techniques

• Modeling the context of a system:

– Identify the actors that surrounds the system by considering

which groups require help from these system to perform

their tasks; which groups are needed to execute the system’s

functions; which groups interact with external hardware or

other software systems; and which groups perform

secondary functions for administration and maintenance.

– Organize actors that are similar to one another in a

generalization hierarchy.

– Where it aids understandability, provide stereotype for each

such actor.

– Populate a use case diagram with these actors and specify

the paths of communication from each actor to the system’s

use cases.

Credit card validation system

Perform card

transaction

Process

customer bill

Reconcile

transactions

Manage

customer

account

Customer

Individual

customer

Corporate

Customer

Sponsoring

financial

institution

Retail

Instruction

• Modeling the requirements of a system:

– Establish the context of the system by identifying

the actors that surround it.

– For each actor, consider the behavior that each

expects or require the system to provide.

– Name these common behaviors as use cases.

– Factor common behavior into new cases that are

used by others; factor variant behavior into new

cases that extend more main line flows.

– Model these use cases, actors and their

relationships in a use case diagram.

– Adorn these use cases with notes that assert

nonfunctional requirements; you may have to attach

some of these to the whole system.

Credit card validation system

Perform card

transaction

Report on

account status

Process

customer bill

Detect card

fraud

Reconcile

transactions

Manage

customer

account

Manage

network

outage

Customer

Retail institution

Sponsoring financial

institution

Interaction diagrams

• Sequence diagram and collaboration diagram both

are interaction diagrams.

• Interactions diagrams are used to model the dynamic

aspects of a system.

• An interaction diagram shows an interaction ,

consisting of a set of objects and their relationships,

including messages that may be dispatched among

them.

• Sequence diagram emphasizes the time ordering of

messages.

• Collaboration diagram emphasizes the structural

organization of the objects that send and receive

messages.

Terms and Concepts

• An interaction diagram shows an interaction ,

consisting of a set of objects and their relationships,

including messages that may be dispatched among

them.

• Sequence diagram emphasizes the time ordering of

messages. Graphically , it is a table that shows objects

arranged along the X-axis and messages ordered in

increasing time.

• Collaboration diagram emphasizes the structural

organization of the objects that send and receive

messages. Graphically, it is a collection of vertices

and arcs.

Common Properties

• An interaction diagram is just a special kind of

diagram and shares the same common properties

as do all other diagrams- a name and graphical

contents that are a projection into a model.

• Contents:

– Interaction diagram commonly contains

• Objects

• Links

• Messages

• Sequence Diagram:

– It emphasizes the time ordering of messages.

c:Client p:ODBCproxy

:transaction

objects

“create”

setActions(a,d,o)

commited

“destroy”

setValues(d,3,4)

setValues(a,”CO”)

{transient}

Focus of control lifeline

• Sequence diagram have two features that

distinguish them form collaboration diagrams.

– There is object lifeline. It is vertical dashed line that

represents the existence of an object over a period of

time.

– There is the focus of control. It is a tall, thin rectangle

that shows the period of time during which an object is

performing an action, either directly or though a

subordinate procedure. The top of the rectangle is

aligned with the start of the action; the bottom is

aligned with its completion

• Collaboration diagram:

– It emphasizes the organization of the objects that

participates in an interaction.

c:Client

p:ODBCproxy:transaction

1:<<create>>

2:setActions(a,d,o)

3:<<destroy>>

2.1:setValues(d,3,4)

2.2:setValues(a,”CO”)

link

message

<<global>>

<<local>>

path

stereotype

sequence

• Collaboration Diagrams have two features that

distinguish them from Sequence diagram:

– There is path. To indicate how one object is

linked with other object, a path stereotype can

be attached to far end of link.

• <<local>> -designated object is local to the sender

• Need to render the path of the link explicitly for

local, parameter, global and self path.

– There is sequence number. To indicate the time

order of a message, prefix the message with a

number increasing monotonically for each new

message in the flow of control. To show nesting

decimal numbering can be used.

Activity Diagram

• It is one of the five diagrams in UML for modeling

dynamic aspects of systems.

• An activity diagram is essentially a flow chart,

showing flow of control from activity to activity.

• This involves modeling the sequential steps in a

computational process.

• Also modeling of the flow of an object as it moves

from state to state at different points in the flow of

control.

• Activity diagrams may stand alone to visualize,

specify, construct and document the dynamics or

may be used to model the flow of control from object

to object.

• Activity diagrams are not only important for

modeling the dynamic aspects of a system, but

also for constructing executable systems through

forward and reverse engineering.

Terms and Concepts

• An activity diagram shows the flow from activity

to activity.

• An activity is an outgoing nonatomic execution

within state machine.

• Activities ultimately result in some action ,which

is made up of executable atomic computations that

result in a change in state of the system or the

return of a value

• Actions encompass calling another operation,

sending a signal, creating or destroying an object

or some pure computations.

• Graphically, activity diagram is a collection of

vertices and arcs.

Common Properties:

• Activity diagram is just a special kind of diagrams

and shares the same common properties like other

diagrams- a name and graphical contents that are a

projection in to model.

Contents:

• Activity diagrams commonly contain

– Activity states and action states

– Transitions

– Objects

• Action states and Activity states

– In the flow of control modeled by an activity

diagram, things happen.

– Some expressions can be evaluated that sets the

value of an attribute or returns some value.

– Alternatively, might cal an operation on an

object and send a signal to object or create or

destroy object.

• These executable atomic computations are called

actions states because they are states of system,

each representing the execution of an action

• Action states can’t be decomposed.

• Actions are atomic means events may occur but

the work of the action state is not interrupted.

• The work of an action state is generally considered

to take insignificant execution time.

Bid plan

Index:=lookup(e)+7;

Simple action

Expression

• Activity states can be further decomposed , their

activity being represented by other activity

diagram.

• Activity states are not atomic means they may be

interrupted and are considered to take some

duration to complete.

• Action state may be considered a special case of

activity state.

• An action state is an activity state that cannot be

further decomposed.

• Activity state can be a composite, whose flow of

control is made up of other activity states.

Process bill(b)

Do construction()

entry/setlock()
Activity state

submachine

entry action

Transitions:

• When the action or activity of a state completes, flow

of control passes immediately to the next action or

activity state.

• This flow is represented by using transitions to show

the path from one action or activity to next action or

activity.

• A flow of control has to start and end someplace.

Select site

Commission architect

Initial or

start state

Trigger less

transition

Final or stop

state

Action

state

Branching:

• Sequential transition is common. As in flow chart,

a branch can be included, which specifies alternate

paths takes based on some Boolean expression.

• A branch is represented by diamond.

• A branch have one incoming transition and two or

more outgoing ones. On each outgoing transition

place a Boolean expression , which is evaluated

only once on entering the branch.

• Across all these transitions, guards should not

overlap.

Release work order

Reschedule

Assign tasks

[material not ready]

[material ready]

Branch

Guard expression

Forking and Joining:

• Simple and branching sequential transitions are

common.

• Sometimes while modeling flows of business

process, concurrent flows can be encountered.

• In UML, a synchronization bar is used to specify

the forking and joining of parallel flows of

control.

• A synchronization bar is rendered as thick

horizontal or vertical line.

Prepare for speech

Gesture()
Decompress

Synch mouth() Stream audio

Clean up

fork

join

Swimlanes:

• When you are modeling workflows of business

process to partition the activity states on an

activity diagram into group, each group

representing the business organization responsible

for those activities swimlanes are useful.

• In the UML, each group is called swimlane

because, visually each group is divided from its

neighbor by vertical solid line.

• Swinlane specifies a locus of activities.

• Each swimlane has unique name within its

diagram.

• It has no deep semantics.

• It represents high level responsibility for

part of overall activity of an activity

diagram.

• Each swimlane may eventually

implemented by one or more classes.

• In an activity diagram partitioned into

swinlanes, every activity belongs to exactly

one swimlane but transitions may cross

lanes.

Customer Sales Ware house

Request product

Process order

Pull materials

Ship order

Receive order Bill customer

Pay bill
Close order

swimlanes

Advance Class Modeling

Advanced Object and Class

Concepts
● Enumerations

● Multiplicity

● Scope

● Visibility

● Association Ends
– Aggregation

– Changability

– Navigability

– Visibility

Enumerations
● Datatype with a finite set of values

● Eg: Access Permissions of a file, different suits of the card

game, different colours and ranks of the card game,

colours of the rainbow etc..

● Do not use generalizations to capture the value of an

enumerated attribute. Eg: dont introduce a generalization

for a card, because most games dont differentiate the

behaviour of suits, colours etc.

● You should introduce generalization only when there are

significant attributes, operations or associations that do

not apply to the super class.

Multiplicity
● It is a constraint on the cardinality of a set

● Used to specify for attributes also !!

● Eg: Person class as attributes :

– Name : String [1]

– Address : string [1..*]

– PhoneNumber : string [*]

– Birthdate : date [1]

Scope
● Scope indicates if a feature applies to a class or to

an object

● Underline for an attribute distinguishes that

attribute's scope is the class (static) and not object

● Such attributes are listed at the top of the attributes

and operations of the class.

● Use an attribute with class scope to hold the extent

of a class.

● They are used in OO Databases, but otherwise are

discouraged, because they lead to an inferior

model

Visibility
● Refers to the ability of a method to reference from

another class.

● Possible values :- public, private, protected,

package

● Methods of classes defined in the same package

as the target class can access package features.

● UML denotes visibility with a prefix :

– + precedes public

– # precedes protected features

– - precedes private

– ~ precedes package features.

Visibility
●Issues to consider when choosing visibility

–Comprehension : Understand all public features of
the class to understand the capabilities of the class.

Private, protected and package features can be

ignored.

–Extensibility : Many classes can depend on public

methods, so it is highly disruptive to change their

signature (change the parameters of public functions
or remove a few public data members)

–Context : The methods should be used within the

context, otherwise incorrect results might be
calculated.

Association Ends
●Has
–Association End name

–Multiplicity

–Ordering

–Bags and sequences

–Qualification

●Additional properties
–Aggregation :

●Only binary associations can be an aggregation.

● Association end may be an aggregate or a constituent part.

●One association end must be an aggregate and the other end a

constituent.

Association Ends
●Additional properties

–Changeability : This property specifies the update
status of an association end, which are either

changeable or readonly

–Navigability : Association can be traversed in any
direction, but implementation may support one

direction. UML shows navigability with an arrowhead

attached to the target class.

–Visibility : Association ends may be public, private,
protected or packaged.

N-ary Associations
●n-ary association is an atomic unit and

cannot be subdivided into binary

associations

N-ary Associations
●n-ary association is an atomic unit and

cannot

• be subdivided into binary associations

●Eg:- A professor teaches a course in a

•semester. Result is a delivered course in

a particular room number. The delivered

course has a text book.

Relationships: Aggregation
A special form of association that models a

whole-part relationship between an aggregate

(the whole) and its parts

Relationships: Aggregation

Vi deotape

Tape ids.

Lecture
notes

Tex t

OHP sli des

Sl ides

Assignment

Credi ts

So lu ti ons

Tex t

Diagrams

Exercises

#Problems
Descrip ti on

Course ti tl e
Number
Year
Inst ructor

Study pack

1 ..*

1 1 1 1

0 ..*1 ..*1 ..*

1 1

1 ..* 1 ..*

Aggregation Vs. Association
Aggregation is a special form of association

and not an independent concept

If two objects are tightly coupled by a part-

whole relationship, it is aggregation.

If two objects are usually considered

independent and, even though they may be

linked, it is an association.

Significant property of aggregation is

transitivity and antisymmetric

Aggregation Vs. Composition
Composition is a more restrictive form of aggregation.

A form of aggregation with strong ownership and coincident

lifetimes.

The parts cannot survive the whole/aggregate

It has two constraints :-

– A constituent part can belong to atmost one assembly.

Thus composition implies relationship of the parts by

whole.

– Deletion of an assembly triggers deletion of all the

constituent objects via composition.

– Denoted by a small dark diamond box next to the

assemble class.

Aggregation Vs. Composition

Student Schedule

Whole

Aggregation

Part

Write the composition for :- A company

consists of divisions, which inturn consists

of departments. A company is not a

composition of its employees.

Propagation of Operations
Propagation is the automatic application of

an operation to a network of objects, when

the operation is applied to some starting

object.

Eg:- Moving an aggregation, moves its

parts

The move operation is propagated to its

parts which are in aggregation.

Eg of Propagation : A person owns

multiple documents, each document has

many paragraphs which inturn has many

characters.

Propagation of Operations

Here Copy operation propagates from documents to

paragraphs to characters.

The operation does not propagate in the reverse

direction.

Propagation is indicated with a small arrow in the

direction of propagation and the operation name next to it.

Abstract Classes
An abstract class is a class that has no

direct instances but whose descendant

classes have direct instances.

A concrete class is a class that is

instantiable ,that is ,it can have direct

instances.

They can have derived classes, which can

have instances of themselves. Such

derived classes from abstract base

classes are called concrete classes.

Abstract class names are displayed in

italics.

Abstract Classes
Abstract classes define methods that can

be inherited by subclasses.

Alternatively, they can define the signature

of an operation and the derived classes

have to implement the methods for the

same. Such methods are called Abstract

Operations.

An Abstract operation defines the

signature for an operation for which each

concrete class must provide its own

implementation.

A Concrete class may have derived

Abstract Classes

Multiple Inheritance

Permits a class to have more than one

base classes and to inherit features for all

the parents.

Advantage is that they have greater power

in specifying classes and an increased

opportunity for re-use.

Disadvantage is loss of simplicity.

Kinds of Multiple Inheritance
Multiple inheritance from disjoint classes.

Eg(fig on next slide) :-
Each employee is either a fullTimeEmployee

or PartTimeEmployee (disjoint) derived from

Base class Employee.

Manager and IndividualContributor are also

disjoint classes derived from classes

Employee.

A FullTimeIndividualContributor is both

FullTimeEmployee and IndividualContributor

and derives both their features.

Class Employee independently specializes on

Employment status and Management Status

Multiple Inheritance from

disjoint classes

Kinds of Multiple Inheritance
Attributes under the disjoint classes should

be defined correctly otherwise they lead to

ambiguity. Eg: FullTimeEmployee.name

might give employee's name, but

IndividualContributor.name might refer to his

title.

Multiple Inheritance with

Overlapping Subclasses

● Eg:- Amphibious vehicle is both a land

vehicle and water vehicle, because it

travels on both land and water.

● Eg:- An amphibian is a creature that is

born as a fish, but then as it grows up,

it moves to the land. A frog lives on

land and water.

Multiple Inheritance with

Overlapping Subclasses

Multiple Classification

● An Instance of the class is inherently an

instance of all ancestors of the class.

● For Eg: Teaching faculty could also be an

instructor, and a student could also be an

instructor. Model in next slide.

● How about A Senior Professor in MIT ?

● There is no class to describe this

combination.

● UML permits multiple classification, but

most OO Languages handle it poorly.

Multiple Classification

Workarounds for Multiple

Inheritance
● An Instance of the class is inherently an

instance of all ancestors of the class.

● For Eg: Teaching faculty could also be an

instructor, and a student could also be an

instructor. Model in next slide.

● How about A Senior Professor in MIT ?

● There is no class to describe this

combination.

● UML permits multiple classification, but

most OO Languages handle it poorly.

Delegation using composition

of parts
● Recast a superclass with generalizations

as a composition in which each constituent

part replaces a generalization.

● Inheritance of operations across the

composition is not automatic.

● Fig next page, An operation sent to the

Employee Object has to be redirected to

the EmployeeEmployment or

EmployeeManagement.

Delegation using composition of parts

● If EmploymentStatus is important, inherit

that and delegate the

EmployeeManagement which specifies

Manager and IndividualContributor.

Inherit the most important class and delegate the rest

● Has 2 classes for manager and 2 for

IndividualContributor.

● Preserves inheritance, but duplicates code

violating spirits of OO Programming

Nested Generalizations

● Super Classes of equal importance : When

there are more than one super classes of

equal importance, it is best to use

Delegation

● Dominant Superclasses : If one superclass

clearly dominates the others, preserve

inheritance through this path.

● Few Subclasses :- consider nested

generalizations.

When to use these workaround ?

● Sequencing generalizations sets : Factor

of the most important generalization first,

then second and so on...

● Large quantities of code : if large quantities

of code are generated, avoid nested

generalizations.

● Identity : Only nested generalizations

preserve strict identity.

When to use these workaround ?

● Metadata is data that describes other data

● A Car model has : model name, price,

make, company etc

● A Physical car has : color, reg no, owner

etc..

● You can consider classes as objects, But

Classes are meta-objects and not real

world objects.

● Class descriptor objects have features and

they inturn have their own classes which

are called metaclasses.

Metadata

Metadata

Reification

● It is the promotion of something that is not

an object to an object.

● It is useful to promote attributes, methods,

constraints and control information into

objects so that you can describe and

manipulate them as data.

● Helpful for meta applications because it

helps you to shift the level of abstraction.

● Fig promotes the substanceName

attribute to a class

● This captures a many to many

relationship between Substance and

SubstanceName

Reification

● Consider a database manager : Conventionally, a

developer would write code to r/w data from files.

● It is better to reify the notion of data services and

use a database manager. A database manager

has abstract functionality that provides a general

purpose solution to accessing data reliably and

quickly for multiple users.

● Consider a state transition diagram : prepare a

meta model and state transition model as data. A

general purpose interpreter reads the contents of

the meta model and executes the intent.

Constraints

● A Constraint restricts the values that the elements

can assume.

● Elements means : Objects, Attributes, links,

associations and generalization sets

● Constraints can be expresses using Object

Constraint Language. (OCL)

Constraints on Objects
● Eg:

– No employee's salary can exceed salary of

his/her boss's salary.

– No window can have its aspect ratio

(length/width) less than 0.8 or greater than 1.5

– Priority of a job may not increase over time.

Person
Name

Birthdate
address

Company

Name
Address

Window
Length
Width

*

1

Worker

Boss

Constraints on Generalization Sets

● Disjoint Classes

● Overlapping Classes

● Complete (Generalization lists all possible

subclasses)

● Incomplete (Generalization may be missing some

subclasses

Constraints on Links

● Multiplicity is a constraint on the cardinality of a

set.

– Multiplicity for association

– Multiplicity for attributes

● Qualification is also a constraint on the

association. A Qualifier signifies how many objects

are there at an association end.

● Association class implies a constraint. It has a

constraint that an ordinary class done not have !

– It derives its identity from the instances of its

related classes.

● Associations have the constraint {ordered}

Constraints on Links

● Associations have the constraint {ordered}

● Subset Constraint :- Fig shows how the

Association ChairOf is a subset of the association

MemberOf.

Constraints

● Constraints provide one criterion for measuring the

quality of a class model.

● A Good class model captures many constraints

thro its structure.

● A Constraint is placed with braces

● Dashed lines are used to connect constrained

elements. A dashed arrow can connect a

constrained element to the element on which it

depends.

Derived Data

● Just like derived classes, attributes of a class and

associations b/w classes can be derived

● A derived attribute is a function of one or more

elements.

● Age can be derived from Birthdate and

CurrentDate

Person
Birthdate

/ Age

Current Date

Package Name

OO Principle:

Modularity

What is a Package?

A package is a general purpose mechanism

for organizing elements into groups

A model element which can contain other

model elements

Uses

Organize the model under development

A unit of configuration management

THE END

