Use Case Diagram

Introduction:

Purpose:

A use case diagram describes how a system interacts with outside actors.
It is a graphical representation of the interaction among the elements and system.
Each use case representation a piece of functionality that a system provides to its user.
Use case identifies the functionality of a system.
Use case diagram allows for the specification of higher level user goals that the system must carry out.
These goals are not necessarily to tasks or actions, but can be more general required functionality of
the system.
You can apply use case to capture the intended behavior of the system you are developing, without
having to specify how that behavior is implemented.
A use case diagram at its simplest is a representation of a user's interaction with the system and
depicting the specifications of a use case.
A use case diagram contains four components.
i. The boundary, which defines the system of interest in relation to the world around it.
ii. The actors, usually individuals involved with the system defined according to their roles.
iii. The use cases, which the specific roles are played by the actors within and around the system.

iv. The relationships between and among the actors and the use cases.

The main purpose of the use case diagram is to capture the dynamic aspect of a system.
Use case diagram shows, what software is suppose to do from user point of view.

It describes the behavior of system from user’s point.

It provides functional description of system and its major processes.

Use case diagram defines the scope of the system you are building.

When to Use: Use Cases Diagrams

- Use cases are used in almost every project.

- They are helpful in exposing requirements and planning the project.

- During the initial stage of a project most use cases should be defined.

Use Case Diagram Notations:

Mo Name Motation

Description

1 System boundary Sy‘stem

The scope of a system can be represented by a system
boundary. The use cases of the system are placed
inside the system boundary, while the actors who
interact with the system are put outside the system.
The use cases in the system make up the total

requirements of the system.

2 Use case B
D
\"'\-\.

- —

A use case represents a user goal that can be achieved

by accessing the system or software application.

Actors are the entities that interact with a system.
Although in most cases, actors are used to represent
the users of system, actors can actually be anything
that needs to exchange information with the system.
50 an actor may be people, computer hardware, other
systems, etc. Note that actor represent a role that a

user can play, but not a spedfic user.

Actor and use case can be associated to indicate that
the actor participates in that use case. Therefore, an
assodation corresponds to a sequence of actions
between the actor and use case in achieving the use

case.

A generalization relationship is used to represent
inheritance relationship betwesn model elements of

same type.

3 Actor
Ao
q Assodation
5 Generalization
1 Include e

An include relationship specifies how the behavior for
the indusion use case is inserted into the behavior

defined for the base use case.

7 Extends [T An extend relationship specifies how the behavior of
the extension use case can be inserted into the
behavior defined for the base use case.

a Constraint Eoadilicen Show condition exists bebween actors an activity.

9 Package Package is defined as collection of dazses. Classes are

Package unified together using a package.

10 Interface nterlace O— Interface is used to connect package and use-case.
Head is linked with package and tail linked with use-
case.

11 Note Note is generally used to write comment in use-case
diagram.

12 Anchor Anchor is used to connect a note the use case in use

case diagram

Class Diagram

Introduction
The class diagram is a static diagram.
A class model captures the static structure of a system by characterizing the objects in the system, the
relationship between the objects, and the attributes and operations for each class of objects.
The dlass diagram can be mapped directly with object oriented languages.
The class model is the mast important amonethe three models.
Class diagram provide a graphical notation for modeling classes and their relationship.
They are concise, easy to understand, and work well in practice.
Class diagrams are the backbone of almost every object-aoriented method including UBL
They describe the static structure of a system.

Purpose
Amalysis and design of the static view of an application.
Describe responsibilities of a system.

Baze for component and deployment diagrams.

When to use : Class Diagram
Useful for Forward and Reverse engineering.
Class diagrams are useful both for abstract modeling and for designing actual programis.
Developer uses class diagram for implementation decision.

Business analysts can use class diagrams to model systems from the business perspective.

Sr. No.

Mame

Symbol

Meaning

Class

class name

Class is an entity of the
class diagram. It
describes a group of
objects with same

properties & behavior.

Object

Ohjert name : Class

An object is an instance

of occurrence of a class.

Lirik

Ohbjact

Object?

Alink is a physical or
conceptual connection

among objects

Association

Classl

Class4

An association is a
description of a links with
common structure &

Ccommon semantics.

Multiplicity

Ex.

class

to 1

to .

to .

ta 1

ta 0....

class2

Multiplicity specifies the
number of instances of
one dass that may relate
to a single instance of an
associated dass.

It is & constraint an the

cardinality of a set.

Association

class

Assaciation Class name

It is an association that is
a clazs which describes
the assodation with

attributes.

cardinality

classi

{cardinality type}

classd

It describes the count of

elements from collection.

ordering

clagg1

{ordered]

=~]

It is used to indicate an
ordered set of objects
with no duplication

allenaed.

bag

clasai

{bag}

clagsd

A bag is a collection of

unardered elements with

duplicates allowed.

10.

seguence

claggl

{sequence]

dlagsd

A sequence is an ordered
collection of elements

with duplicates allowed.

11

gualified

association

Classq

Classd

} qualifier ——

Qualification increases
the precision of a model.
It Is used to avold many
to many multiplicities and
it converts into one to

one multiplicity.

12.

peneralization

Clagad

Class

Generalization organizes
dasses by their super-
class and sub-class

relationship.

13.

anumeration

ety Lrat Bl o

An enumeration is a data
type that has a finite set

of values.

14.

ageregation

Clagad |

Clasai

=i

Itis a strong form of
association im which an
aggregate object is made

of constituent parts.

15.

composition

Classi

|

Class 2

It iz a form of
aggregation. Composition
implies ownership of the

parts by the whole.

16.

Abstract class

=«phsbract>>

It is a class that has no

direct instances.

17.

Concrete class

Clasad

Itis a class that is
intangible; it can have
direct instances. Class-2 is

axample of concrete class

18,

package

Package

& package is a group of
glements with common

theme.

State Chart Diagram

Introduction
A state diagram is o graph in which nodes correspond te stotes and directed arcs correspond to transitions
lobeled with event names.
A& state diagram combines states and events in the form of a network to model all possible object states
during its life cycle, helping to visualize how an object responds to different stimuli.
A& state diagram is a graph whose nodes are states and whose directed arcs are transitions between states.
A state diagram specifies the state sequence caused by event sequence.
State names miust be unigue within the scope of a state diagram.
All objects in a class execute the state diagram for that class, which models their commaon behavior.
We can implement state diagrams by direct interpretation or by converting the semantics into equivalent
programming code.

Purpose
The state model describes those aspects of objects concerned with time and the sequencing of operations
events that mark changes, states that define the context for events, and the organization of events
and states.
They are used to give an abstract description of the behavior of a system.
It provides direction and guidance to the individual counties within the states.
it specifies the possible states what transitions are allowed between states.
It describes the common behavior for the objects in a cdass and each object changes its
behavior from one state to another.
it is used to describe the dependence of the functionality on the state of the system that
is how the functionality of an object depends on its state and how its state changes as a
result of the events that it receives.
It describes dynamic behavior of the objects of the system.

When to use: State Diagram
They are perfectly useful to model behavior in real time systemn.
Each state represents a named condition during the life of an object during which it
satisfies some condition or waits for some event
It determines how objects of that class react to events

For each object state, it determines what actions the object will perform when it receives an event.

Mo. | Name Notation Description
1 State - A state is an abstraction of the values and links of
State) :)))
\ an object. State models a situation during which
some [usually implicit) invariant condition holds.
2 Transition A transition is a directed relationship between a
* source state and a target state. It may be part of a
compound tramsition, which takes the state
machine from one state configuration to another
3 Event A transition is an instantaneous change from one
' to another state
4 Change Event & change in value of a Boolean expression
When [Condition)
5 Time Event The arrival of an absolute time or the passage of a
at (time condition)))
> relative amount of time
B Signal Event Receipt of an explicit, named, asynchronous
{ﬂ'.s_;pgn:ji}} N)
communication among objects.
Callision "6 ot}
force: Float
A guard condition is a Boolean expression that
must be true in order for a transition to occur.
7 Guarded [euard condition]
transition i
8 Do activity & do activity an activity that continuous for

dod Activily

extended time within state.

9 Entry activity An state is entered by any incoming transition the
entry activity is performed
10 | Exit activity When the state is exited by any outgoing
[Fxll Ij transition the exit activity is performed
11 | Nested State A submachine state specifies the insertion of the
7
Diagram I\l acal shate rmame | sub stte rm'hl*-] specification of a submachine. The state machine
that contains the submachine state is called the
Sub machine
. containing state machine.

Diagram

12 | Composite A state can be refined hierarchically by composite
- Campos el ﬂ“.
State states,
\"
..—1: Irksinals tafss I—ﬁ: iy
vy

13 | Activity Event/effect An activity is actual behavior that can be invoked

effect by any number of effects
14 | Initial state . It shows the starting state of object.

point
15 | Final state It shows the terminating state of object.

point

L

Sequence Diagram

Introduction
Sequence diagrams model the dynamic aspects of a software system.
Thi emphasis is on the “sequence” of messages rather than relationship between objects.
A sequence diagram maps the flow of logic or flow of control within a usage scenario into a visual diagram
enabling the software architect to both document and validate the logic during the analysis and design
stages.
Sequence diagrams provide more detail and show the message exchanged among a set of objects over time.
Sequence diagrams are good for showing the behavior sequences seen by users of a diagram shows only the
sequence of messages not their exact timing.

Sequence diagrams can show concurrent signals.

Purpose
The main purpose of this diagram is to represent how different business objects interact.
A seguence diagram shows object interactions arranged in time sequence.
It depicts the objects and classes involved in the scenario and the sequence of messages exchanged

between the objects needed to carry out the functionality of the scenario.
When to use : Sequence Diagram

Sequence diagram can be a helpful modeling tool when the dynamic behavior of objects needs to be
observed in a particular use case or when there is a need for visualizing the “big picture of message flow”.
A company's technical staff could utilize sequence diagrams in order to document the behavior of a future
system.

It is during the design period that developers and architects utilize the diagram to showcase the system's

object interactions, thereby putting out a more fleshed out overall system design.

Sr. No. Name Motation Desription

1 Object It represents the existence of an object
ot a particular time.

2 Lite line Liteline represents the duration during
which an object is alive and interacting
with other objects in the system. It is

i represented by dashed lines.
i

3 Scope It shows the time period during which
an object or actor is performing an
action.

A Message Message To send message trom one object to

_—
another.
transition
5 Message with attribute Rl e To send message with some particular
_—

attribute

Message with constraint Manstiaind To send message from one object to
> .
other vy some constraint.
hcknowledgement Aknorledgment It represent communication between
{_ R —

objects conveys acknowledgement.

Self message

Self message occurs when an object

sends a message to itself.

Recursive message

Self message occurs when an object
sends a message to itself within

recursive scope,

Activity Diagram

Introduction
An activity diagram is a type of flow chart with additional support for parallel behavior.
This diagram explains overall flow of contral.
Activity diagram is another important diagram in UML to describe dynamic aspects of the system.
Activity diagram is basically a flow chart to represent the flow from one activity to another activity
The activity can be described as an operation of the system.
The control flow is drawn from one operation to another. This flow can be sequential, branched or
concurrent. This distinction is important for a distributed system.

Activity diagrams deals with all type of flow control by using different elements like fork, join etc.

Purpose
Contrary to use case diagrams, in activity diagrams it is obvious whether actors can perform business use
cases together or independently from one another.

Activity diagrams allow you to think functionally.

When to use ; Activity Diagrams
Activity diagrams are most useful when modeling the parallel behavior of a multithreaded system or when
documenting the logic of a business process.
Because it is possible to explicitly describe parallel events, the activity diagram is well suited for the
illustration of business processes, since business processes rarely occur in a linear manner and often exhibit
parallelisms.
This diagram is useful to investigate business requirements at a later stage.
An activity diagram is drawn from a very high level. 5o it gives high level view of a system. This high level
view is mainly for business users or any other person who is not a technical person.
This diagram is used to model the activities which are nothing but business requirements.

50 the diagram has more impact on business understanding rather implementation details.

Symbol

Description

Activity

Represent individual activity of system.

Transition

Represents flow of data from one activity to

another.

Decision

Decision nodeis acontrol nodethat accepts
tokens onm one or moreincoming edges and
selects outgoing edge from two or more outgoing
flows. The notatiom for a decision node is a

diamond-shaped symbol.

Initial activity

Initizl node is a control node at which flow starts
when the activity is invoked. Activity may hawve
more than one initial mode. Initial nodes are

shown as a small solid circle.

Final activity

Fork

loin

Final node iz a control final node that stops all
flows in an activity. Activity final nodes are shown
as 3 solid drcle with a hollow drcle inside. It can
be thought of as a goal notated as "bulls eye,” or

target.

A fork in the activity diagram has a single
incoming transition and multiple outgoing
transitions exhibiting parallel behavior.The
incoming transition triggers the parallel outgoing

transitions.

A joim i the activity diagram synchronizes the
parallel behavior started at a fork. Join ascertains
that all the parallel sets of activities (irrespective
of the order) are completed before the next
activity starts. It is a synchronization point in the
diagram. Each fork in an activity diagram has a
corresponding join where the parallel behavior

terminates.

