Design Patterns CD

-'"" ADDISON-WESLEY PROFESSIONAL COMPUTING SERIES

Design Patterns CD

Elements of Reusable Object-Oriented Software

Erich Gamma Richard Helm Ralph Jlohnson John Viissides

Fareword by Grady Booch

.
<+ Contents

Optimized for:
(® 800 x 600 or greater
O 640 x 480

w Q&A

<+ Related Books

M, G, Eacher'a "Swara' 1998 Gerdsn At - Basen - Halland
All righta reservad,

S Adison Weshey Langrman, Ins. Al righls ressargesd.
By wsivng Lies produet, single usars and nelwork oensees agree b b boumd By The e of Be liceriss apesomnent.

CLICK HERE to view the licenss zgreemeant

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/ [21/08/2002 19:01:33]

http://lci.cs.ubbcluj.ro/~raduking/Books/lowres/index.htm
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/bios.htm
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/license.htm

Table of Contents

©

SEARCH

Preface to CD
Preface to Book
Foreword

Guide to Readers
Introduction

A Case Study
Creational Patterns
Structural Patterns
Behavioral Patierns
Conclusion
Glossary

Guide to Notation

Foundation
Classes

Bibliography

Contents

Contents L2700 tuﬁnadu5| Glossary | Notation | Foundation | Bibliography | Index | Pattern Map |

L4

L

¥

L

v

Help | Intro

Preface to CD

Preface to Book

Foreword

Guide to Readers

Introduction

. What IsaDesign Pattern?

. Design Patternsin Smalltalk MVC
. Describing Design Patterns

. The Catalog of Design Patterns

Case Study | Pattern Catalog | Conclusion

Index

. Organizing the Catalog

. How Design Patterns Solve Design Problems
. How to Select aDesign Pattern

. How to Use aDesign Pattern

» A Case Study: Designing a Document Editor

. Design Problems

. Document Structure

. Formatting

. Embellishing the User Interface

. Supporting Multiple Look-and-Feel Standards
« Supporting Multiple Window Systems

. User Operations

. Spelling Checking and Hyphenation

. Summary

Design Pattern Catalog

» Creational Patterns

. Abstract Factory
. Builder

. Factory Method
. Prototype

. Singleton

. Discussion of Creational Patterns

w Structural Patterns

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/contfs.htm (1 of 3) [21/08/2002 19:01:49]

javascript:loadApplet()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/contents.htm#preface
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/contents.htm#pref2
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/contents.htm#fore
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/contents.htm#chap2
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/contents.htm#index
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/contents.htm#bib
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/contents.htm#chapC
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/contents.htm#chapB
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/contents.htm#chapA
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/contents.htm#chap6
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/contents.htm#chap5
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/contents.htm#chap4
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/contents.htm#chap3
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/contents.htm#chap1
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/contents.htm#guide
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/helpfs.htm
javascript:build()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/patcafs.htm

Table of Contents

. Adapter

. Bridge

. Composite
. Decorator
. Facade

. Flyweight
. Proxy

. Discussion of Structural Patterns

» Behavioral Patterns

. Chain of Responsibility
. Command

. Interpreter

. lterator

. Mediator

. Memento

. Observer

. State

. Strategy

. Template Method
. Visitor

. Discussion of Behavioral Patterns

w Conclusion

. What to Expect from Design Patterns
. A Brief History

. The Pattern Community

. Anlnvitation

« A Parting Thought

v Glossary

» Guide to Notation

. ClassDiagram
. Object Diagram

. |Interaction Diagram

» Foundation Classes

. List

. lterator

. Listlterator
- Point

- Rect

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/contfs.htm (2 of 3) [21/08/2002 19:01:49]

Table of Contents

v Bibliography

w Index

A
p Prefaceto CD

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/contfs.htm (3 of 3) [21/08/2002 19:01:49]

Design Patterns CD

Frequently Asked Questions (and Their
Answers)

How do | display the contents page of the Design Patterns CD?
Go back to the main screen and click on the word "Contents." Thiswill bring up the contents
page that will let you navigate through the rest of the book.

How do | link my documentsto the CD?
Because the Design Patterns CD uses framesets to provide important navigational tools, any
hyperlinks you make to point to the CD should invoke the appropriate frameset file, not just
the chapter fileitself.

The best method for obtaining the appropriate URL for use in your own Web page is to use one of the
built-in navigational aids (such as the top banner or bottom pattern menu). However, rather than
clicking the left mouse button, use the right button to display the menu of extended choices. Then
select "Copy Link Location" in Netscape or "Copy Shortcut” in Internet Explorer. Put that link onto
your cut buffer. Y ou can now paste the URL into your own HTML document as an attribute to the
anchor (<A>) tag.

Which browserscan | use with the Design Patterns CD?
The Design Patterns CD works best with Netscape Navigator on all platforms we have tested,
including MS Windows, Unix, and Macintosh. The Design Patterns CD also works with
Microsoft Internet Explorer on the MS Windows platform. Although it should be possible to
use other browsers that support both Java and JavaScript, we have not tested the Design
Patterns CD on those systems and do not provide technical support should problems occur. We
strongly recommend that you use one of these browsers to view the Design Patterns CD.

My computer resolution is 800x600. Isit okay if | usethe version optimized for 640x4807?
Y es, the low-res and high-res versions of the CD contain exactly the same information. The
only difference is that the formatting is done in the way that we believe will ook best on high-
and low-resolution systems. If you prefer the look of the low-res screens on your high-res
system, you should not experience any problems. The reverse is not true, however. Using the
800x600 version on a 640x480 screen may cause you to lose information and is not
recommended.

Why do the applet contents disappear when | iconify and then de-iconify the search applet in
Communicator 4.0/Win95?
Thereisabug in Netscape's Java Virtual Machine for Communicator 4.0 that causes many
java applets to crash when they are iconified to the Windows 95 toolbar. |conifying the search
applet under Communicator 4.0 on Windows 95 will always result in aloss of search contents.
If you encounter this behavior, simply close the applet and click on the Search button in the
main frameset to restore it.

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%?20Patterns/faq.htm (1 of 2) [21/08/2002 19:01:57]

http://home.netscape.com/download/index.html
http://www.microsoft.com/ie/default.asp

Design Patterns CD

Why doesn't an exhaustive sear ch alwaysreturn the sameresults as an indexed search?
There are two things that can cause the index search and exhaustive search to return different
results.

Thefirst isthat the exhaustive search is done over the raw HMTL so that if you the phrase
"describing design patterns’ is found in the HTML source, the exhaustive search
won't match it. The indexer ignores the HTML tags so that it will match this phrase.

The second is that an indexed search matches any section that contains all of the words entered
in any order and with any words in-between. So for example this sentence in the conclusion
matches on the indexed search: "Moreover, describing a system in terms of the design
patterns..." The exhaustive search is much more strict; the words must be in the correct order,
separated only by whitespace.

How can | obtain updates, patches and news about the Design Patterns CD?
Addison Wesley Longman maintains a web page for the Design Patterns CD at
http://www.awl.com/cseng/titles/0-201-63498-8/. Updates, ancillary materials and al other

information will be made available from this site.

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%?20Patterns/faq.htm (2 of 2) [21/08/2002 19:01:57]

http://www.awl.com/cseng/titles/0-201-63498-8/

Related Books

Design Patterns: Elements of Reusable Object-Oriented Software

Erich Gamma, Richard Helm, Ral ph Johnson, and John Vlissides

These four top-notch authors show how object-oriented systems exhibit recurring patterns and
structures of objects that solve particular design problems, alowing designers to reuse successful
designs and architectures without having to rediscover the design solutions. Central to thisbook isa
catalog of 23 design patterns that have seen successful practical application and are representative of
good object-oriented design. Each pattern describes the circumstancesin which it is applicable, when
it can be applied in view of other design constraints, and the consequences and trade-offs of using the
pattern in alarger design.

ISBN 0-201-63442-2 Hardback 416 pages ©1995

The Design Patterns Smalltalk Companion

Sherman Alpert, Kyle Brown, and Bobby Woolf

In this new book, intended as alanguage companion to Design Patterns, noted Smalltalk and design
patterns experts implement the 23 design patterns using Smalltalk code. Using the same successful
format as Design Patterns, this book tailors the topic of design patternsto the Smalltalk
programmer—no other book offers this. The authors have worked closely with the Design Patterns
authors to ensure that this companion volume is held to the same high quality standards that made the
original abestseller. The full source code will be available on Addison-Wesley's web site.

ISBN 0-201-18462-1 Hardback 448 pages ©1998

Analysis Patterns: Reusable Object Models

Martin Fowler

Analysis Patterns is an important contribution to the growing patterns literature. It
captures profound object modeling expertise from different domains as a catalog of
patterns. These domain patterns will help you solve challenging modeling problems
across different domains.

—Erich Gamma, Technical Director, Object Technology International.

Martin Fowler shares with you his wealth of object modeling experience and his keen eye for solving
repeating problems and transforming the solutions into reusable models. Analysis Patterns provides a
catalog of patterns that have emerged in awide range of domains, including trading, measurement,
accounting, and organizational relationships.

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/related.htm (1 of 3) [21/08/2002 19:02:12]

http://www.awl.com/cseng/titles/0-201-63361-2
http://www.awl.com/cseng/titles/0-201-18462-1/
http://www.awl.com/cseng/titles/0-201-89542-0/

Related Books

ISBN 0-201-89542-0 Hardback 672 pages ©1997

Concurrent Programming in Java™: Design Principles and Patterns

Doug Lea

Serious Java programmers interested in using this rich language to the fullest need to master thread
programming to significantly enhance their ability to create high-performance Java applications.
Taking a design pattern approach, this book offers numerous standard design techniques for creating
and implementing Java structures that solve common concurrent programming challenges. Y ou will
learn how to initiate, control, and coordinate concurrent activities using the Java constructs

] ava. | ang. Thr ead, the keywords synchronized and volatile, and the methods wait, notify, and
notifyAll. In addition, you will find detailed coverage of all aspects of thread programming, including
such topics as containment and synchronization, deadlocks and conflicts, state-dependent action,
control, handling user services, flow, and coordinated interaction. Code examples throughout help
clarify the subtleties of the concurrent programming concepts discussed.

ISBN 0-201-69581-2 Paperback 352 pages ©1997

Pattern Languages of Program Design

Edited by James O. Coplien and Douglas C. Schmidt

This book brings you the expertise and creativity of leadersin the design patternsfield, including
James Coplien, Douglas Schmidt, and Ward Cunningham. It explores many facets of design patterns
and reveals how useful this technique can be in awide range of fields and industries—client/server
programming, software design, distributed and parallel processing, financial services, software reuse,
and interface design.

ISBN 0-201-60734-4 Paperback 576 pages ©1995

Pattern Languages of Program Design 2

John M. Vlissides, James O. Coplien, and Norman L. Kerth

This volume, with contributions from the biggest names in the patterns community, isthe second in a
series documenting patterns for professional software developers. This new collection not only reveals
the secrets of great software professionals, but also makes those secrets easy to apply.

ISBN 0-201-89527-7 Paperback 624 pages ©1996

Pattern Languages of Program Design 3

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/related.htm (2 of 3) [21/08/2002 19:02:12]

http://www.awl.com/cseng/titles/0-201-69581-2/
http://www.awl.com/cseng/titles/0-201-60734-4/
http://www.awl.com/cseng/titles/0-201-89527-7/
http://www.awl.com/cseng/titles/0-201-31011-2

Related Books

Robert Martin, Dirk Riehle, and Frank Buschmann

Thisthird volume isthe first to include international submissions, giving the editors even more high-
quality essays from which to choose. This new collection builds upon the popular appeal of the first
two volumes, keeping devel opers up-to-date on the latest uses and implementations of patterns.

ISBN 0-201-31011-2 Paperback 688 pages ©1998

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/related.htm (3 of 3) [21/08/2002 19:02:12]

Prefaceto CD

Case Study | Pattern Catalog | Conclusion

OF " Preface to CD

SEARCH

| Contents |Guide1nﬂeﬂders| Glossary | Notation | Foundation | Bibliography | Index | Pniternl.h:|

Aswe were writing Design Patterns, we knew the patterns we were describing had value because they
had proven themselvesin many different contexts. Our hope was that other software engineers would
benefit from these patterns as much as we had.

Now, three years after its debut, we find ourselves both grateful and thrilled by how the book has been
received. Lots of people useit. Many tell us the patterns have helped them design and build better
systems. Many others have been inspired to write their own patterns, and the pool of patternsis growing.
And many have commented on what might be improved about the book and what they would like to see
in the future.

A recurring comment in all the feedback has been how well-suited the book is to hypertext. There are
numerous cross-references, and chasing references is something a computer can do very well. Since
much of the software devel opment process takes place on computers, it would be natural to have a book
like ours as an on-line resource. Observations like these got us excited about the potential of this
medium. So when Mike Hendrickson approached us about turning the book into a CD-ROM, we jumped
at the chance.

Two years and several megabytes of e-mail later, we're delighted that you can finally obtain this edition,
the Design Patterns CD, and put its unique capabilities to work. Now you can access a pattern from your
computer even when someone has borrowed your book. Y ou can search the text for key words and
phrases. It's aso considerably easier to incorporate parts of it in your own on-line documentation. And if
you travel with a notebook computer, you can keep the book handy without lugging an extra two pounds
of paper.

Hypertext is arelatively new publishing venue, one we are learning to use just like everyone else. If you
have ideas on how to improve this edition, please send them to design-patterns-cd@cs.uiuc.edu. If you

have questions or suggestions concerning the patterns themselves, send them to the gang-of-4-
patterns@cs.uiuc.edu mailing list. (To subscribe, send e-mail to gang-of-4-patterns@cs.uiuc.edu with the

subject "subscribe".) Thislist has quite afew readers, and many of them can answer questions as well as
we can—and usually alot faster! Also, be sure to check out the Patterns Home Page at

http://hillside.net/patterns/. There you'll find other books and mailing lists on patterns, not to mention
conference information and patterns published on-line.

This CD entailed considerable design and implementation work. We are indebted to Mike Hendrickson
and the team at Addison-Wesley for their on-going encouragement and support. Jeff Helgesen, Jason
Jones, and Daniel Savarese garner many thanks for their development effort and for patience despite
what must appear to have been our insatiable appetite for revision. A special acknowledgment is due
IBM Research, which continues to underwrite much of this activity. We also thank the reviewers,
including Robert Brunner, Sandeep Dani, Bob Koss, Scott Meyers, Stefan Schulz, and the Patterns
Discussion Group at the University of Illinois Urbana-Champaign. Their advice led to at least one major
redesign and several minor ones.

Finally, we thank all who have taken time to comment on Design Patterns. Y our feedback has been
invaluable to us as we strive to better our understanding and presentation of this material.

Zurich, Switzerland E.G.
Sydney, Australia R.H.
Urbana, Illinois R.J.

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/preffs.htm (1 of 2) [21/08/2002 19:02:40]

javascript:loadApplet()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/helpfs.htm
javascript:build()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/patcafs.htm
mailto:design-patterns-cd@cs.uiuc.edu
mailto:gang-of-4-patterns@cs.uiuc.edu
mailto:gang-of-4-patterns@cs.uiuc.edu
mailto:gang-of-4-patterns-request@cs.uiuc.edu
http://hillside.net/patterns/
http://hillside.net/patterns/

Prefaceto CD

Hawthorne, New York JV.

August 1997

A
p Preface to Book

4 Contents

Abstract Factory = Adapter » Bridge * Builder + Chain of Responsibility * Command « Composite «
Decorator * Facade = Factory Method = Flyweight = Imterpreter = lterator = Mediator = Memento »
Observer * Prototype + Proxy + Singleton » State » Strategy + Template Method + Visitor

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/preffs.htm (2 of 2) [21/08/2002 19:02:40]

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/preface.htm#top

Preface to Book

Case Study | Pattern Catalog | Conclusion

SEARCH

| Contents |Guide1nﬂeﬂders| Glossary | Notation | Foundation | Bibliography | Index | Pniternl.h:|

This book isn't an introduction to object-oriented technology or design. Many books already do a good
job of that. This book assumes you are reasonably proficient in at least one object-oriented programming
language, and you should have some experience in object-oriented design as well. Y ou definitely
shouldn't have to rush to the nearest dictionary the moment we mention "types* and "polymorphism,” or
"interface" as opposed to "implementation” inheritance.

On the other hand, thisisn't an advanced technical treatise either. It's abook of design patter ns that
describes simple and elegant solutions to specific problems in object-oriented software design. Design
patterns capture solutions that have developed and evolved over time. Hence they aren't the designs
people tend to generate initialy. They reflect untold redesign and recoding as devel opers have struggled
for greater reuse and flexibility in their software. Design patterns capture these solutions in a succinct
and easily applied form.

The design patterns require neither unusual language features nor amazing programming tricks with
which to astound your friends and managers. All can be implemented in standard object-oriented
languages, though they might take alittle more work than ad hoc solutions. But the extra effort
invariably pays dividends in increased flexibility and reusability.

Once you understand the design patterns and have had an "Ahal" (and not just a"Huh?") experience with
them, you won't ever think about object-oriented design in the same way. Y ou'll have insights that can
make your own designs more flexible, modular, reusable, and understandable—which iswhy you're
interested in object-oriented technology in the first place, right?

A word of warning and encouragement: Don't worry if you don't understand this book completely on the
first reading. We didn't understand it all on the first writing! Remember that thisisn't a book to read once
and put on a shelf. We hope you'll find yourself referring to it again and again for design insights and for
inspiration.

This book has had along gestation. It has seen four countries, three of its authors marriages, and the
birth of two (unrelated) offspring. Many people have had a part in its development. Specia thanks are
due Bruce Anderson, Kent Beck, and André Weinand for their inspiration and advice. We a so thank
those who reviewed drafts of the manuscript: Roger Bielefeld, Grady Booch, Tom Cargill, Marshall
Cline, Ralph Hyre, Brian Kernighan, Thomas Laliberty, Mark Lorenz, Arthur Riel, Doug Schmidt,
Clovis Tondo, Steve Vinoski, and Rebecca Wirfs-Brock. We are also grateful to the team at Addison-
Wesley for their help and patience: Kate Habib, Tiffany Moore, Lisa Raffaele, Pradeepa Siva, and John
Wait. Special thanks to Carl Kessler, Danny Sabbah, and Mark Wegman at IBM Research for their
unflagging support of this work.

Last but certainly not least, we thank everyone on the Internet and points beyond who commented on
versions of the patterns, offered encouraging words, and told us that what we were doing was
worthwhile. These people include but are not limited to Jon Avotins, Steve Berczuk, Julian Berdych,
Matthias Bohlen, John Brant, Allan Clarke, Paul Chisholm, Jens Coldewey, Dave Coallins, Jim Coplien,
Don Dwiggins, Gabriele Elia, Doug Felt, Brian Foote, Denis Fortin, Ward Harold, Hermann Hueni,
Nayeem Islam, Bikramjit Kalra, Paul Keefer, Thomas Kofler, Doug Lea, Dan LaL iberte, James Long,
Ann Louise Luu, Pundi Madhavan, Brian Marick, Robert Martin, Dave McComb, Carl McConnell,
Christine Mingins, Hanspeter Mdssenbock, Eric Newton, Marianne Ozkan, Roxsan Payette, Larry
Podmolik, George Radin, Sita Ramakrishnan, Russ Ramirez, Alexander Ran, Dirk Riehle, Bryan
Rosenburg, Aamod Sane, Duri Schmidt, Robert Seidl, Xin Shu, and Bill Walker.

We don't consider this collection of design patterns complete and static; it's more a recording of our

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pref2fs.htm (1 of 2) [21/08/2002 19:02:55]

javascript:loadApplet()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/helpfs.htm
javascript:build()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/patcafs.htm

Preface to Book

current thoughts on design. We welcome comments on it, whether criticisms of our examples, references
and known uses we've missed, or design patterns we should have included. Y ou can write us care of
Addison-Wedley, or send electronic mail to desi gn- patt er ns@s. ui uc. edu. You can also
obtain softcopy for the code in the Sample Code sections by sending the message "send design pattern
source" todesi gn- patt erns- sour ce@s. ui uc. edu. And now there'saWeb page at
http://st-ww.cs. uiuc. edu/ users/ patterns/ DPBook/ DPBook. ht ml for late-

breaking information and updates.

Mountain View, California E.G.
Montreal, Quebec R.H.
Urbana, Illinois R.J.
Hawthorne, New York JV.

August 1994

A
» FOreword

4 Prefaceto CD

Abstract Factory = Adapter = Bridge * Builder = Chain of Responsibility = Command = Composite =
Decorator * Facade » Factory Method = Flyweight = Interpreter = lterator = Mediator = Memento »
Observer = Prototype +« Proxy * Singleton + State + Strategy + Template Method + Visitor

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pref2fs.htm (2 of 2) [21/08/2002 19:02:55]

mailto:design-patterns@cs.uiuc.edu
mailto:design-patterns-source@cs.uiuc.edu
http://st-www.cs.uiuc.edu/users/patterns/DPBook/DPBook.html
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pref2.htm#top

Foreword

Case Study | Pattern Catalog | Conclusion

O Foreword

SEARCH

| Contents |ﬁ.|i|:|ntu Hﬂﬂdﬂ'5| Glossary | Notation | Foundation | Bibliography | Index | Pattern Map |

Consider the work of afuture software archeologist, tracing the history of computing. The fossil record
will likely show clear strata: hereis alayer formed of assembly language artifacts, thereis alayer
populated with the skeletons of high order programming languages (with certain calcified legacy parts
probably still showing some signs of life). Each such layer will be intersected with the imprint of other
factors that have shaped the software landscape: components, residue from the great operating system
and browser wars, methods, processes, tools. Each line in this strata marks a definitive event: below that
line, computing was this way; above that line, the art of computing had changed.

Design Patterns draws such aline of demarcation; thisis awork that represents a change in the practice
of computing. Erich, Richard, Ralph, and John present a compelling case for the importance of patterns
in crafting complex systems. Additionally, they give us alanguage of common patterns that can be used
in avariety of domains.

The impact of thiswork cannot be overstated. As| travel about the world working with projects of
varying domains and complexities, it is uncommon for me to encounter developers who have not at least
heard of the patterns movement. In the more successful projects, it is quite common to see many of these
design patterns actually used.

With this book, the Gang of Four have made a seminal contribution to software engineering. Thereis
much to learned from them, and much to be actively applied.

Grady Booch
Chief Scientist, Rational Software Corporation

'y
» Guide to Readers

4 Preface to Book

Abstract Factory = Adapter = Bridge * Builder = Chain of Responsibility = Command = Composite =
Decorator * Facade » Factory Method = Flyweight = Imterpreter = lterator = Mediator = Memento »
Observer = Prototype +« Proxy * Singleton + State + Strategy + Template Method + Visitor

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/forefs.htm [21/08/2002 19:03:33]

javascript:loadApplet()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/helpfs.htm
javascript:build()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/patcafs.htm
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/foreword.htm#top

Guide to Readers

- Case Study | Pattern Catalog | Conclusion
OF Y Guide to Readers

SEARCH
| Contents [1 X.7"]| Glossary | Notation | Foundation | Bibliography | Index | Pattern Map |

This book has two main parts. Thefirst part (Chapters 1 and 2) describes what design patterns are and
how they help you design object-oriented software. It includes a design case study that demonstrates how
design patterns apply in practice. The second part of the book (Chapters 3, 4, and 5) is a catalog of the
actual design patterns.

The catalog makes up the majority of the book. Its chapters divide the design patterns into three types:
creational, structural, and behavioral. Y ou can use the catalog in several ways. Y ou can read the catalog
from start to finish, or you can just browse from pattern to pattern. Another approach is to study one of
the chapters. That will help you see how closely related patterns distinguish themselves.

Y ou can use the references between the patterns as alogical route through the catalog. This approach will
give you insight into how patterns relate to each other, how they can be combined with other patterns,
and which patterns work well together. Figure 1.1 (page 12) depicts these references graphically.

Y et another way to read the catalog is to use a more problem-directed approach. Skip to Section 1.6
(page 24) to read about some common problems in designing reusable object-oriented software; then

read the patterns that address these problems. Some people read the catalog through first and then use a
problem-directed approach to apply the patterns to their projects.

If you aren't an experienced object-oriented designer, then start with the simplest and most common
patterns:

. Abstract Factory (page 87)
. Adapter (139)

. Composite (163)

. Decorator (175)

. Factory Method (107)

« Observer (293)

. Strat 315

. Template Method (325)

It's hard to find an object-oriented system that doesn't use at |east a couple of these patterns, and large
systems use nearly al of them. This subset will help you understand design patternsin particular and
good object-oriented design in general.

A
p | ntroduction

« Preface to Book

y
Abstract Factory = Adapter * Bridge * Builder + Chain of Responsibility » Command « Composite «
Decorator * Facade » Factory Method * Flyweight = Imterpreter » lterator = Mediator = Memento »
Observer * Prototype * Proxy + Singleton » State » Strategy + Template Method Visitor

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/guidefs.htm [21/08/2002 19:03:50]

javascript:loadApplet()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/helpfs.htm
javascript:build()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/patcafs.htm
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/guide.htm#top

Introduction

©

SEARCH

What is a Deslgn
Pattern?

Design Patterns
in Smalltalk MVC

Describing
Design Patterns

The Catalog of
Design Patterns

Organizing the
Catalog
How Design

Patterns Saolve
Design Problems

How to Select a
Design Pattern

How o Use a
Design Pattern

Pattern Catalog | Conclugion

Case Study

Introduction

| Contents |Guide to Readers | Glossary | Notation | Foundation | Bibliography | Index | Pattern Map |

Designing object-oriented software is hard, and designing reusable object-oriented software is even harder.
Y ou must find pertinent objects, factor them into classes at the right granularity, define class interfaces and
inheritance hierarchies, and establish key relationships among them. Y our design should be specific to the
problem at hand but also general enough to address future problems and requirements. Y ou also want to
avoid redesign, or at least minimize it. Experienced object-oriented designers will tell you that a reusable
and flexible design is difficult if not impossible to get "right” the first time. Before adesign is finished, they
usually try to reuse it severa times, modifying it each time.

Y et experienced object-oriented designers do make good designs. Meanwhile new designers are
overwhelmed by the options available and tend to fall back on non-object-oriented techniques they've used
before. It takes along time for novices to learn what good object-oriented design is all about. Experienced
designers evidently know something inexperienced ones don't. What isit?

One thing expert designers know not to do is solve every problem from first principles. Rather, they reuse
solutions that have worked for them in the past. When they find a good solution, they use it again and again.
Such experience is part of what makes them experts. Consequently, you'll find recurring patterns of classes
and communicating objects in many object-oriented systems. These patterns solve specific design problems
and make object-oriented designs more flexible, elegant, and ultimately reusable. They help designers reuse
successful designs by basing new designs on prior experience. A designer who is familiar with such patterns
can apply them immediately to design problems without having to rediscover them.

An analogy will help illustrate the point. Novelists and playwrights rarely design their plots from scratch.
Instead, they follow patterns like "Tragically Flawed Hero" (Macbeth, Hamlet, etc.) or "The Romantic
Novel" (countless romance novels). In the same way, object-oriented designers follow patterns like
"represent states with objects’ and "decorate objects so you can easily add/remove features.” Once you know
the pattern, alot of design decisions follow automatically.

We all know the value of design experience. How many times have you had design déja-vu—that feeling
that you've solved a problem before but not knowing exactly where or how? If you could remember the
details of the previous problem and how you solved it, then you could reuse the experience instead of
rediscovering it. However, we don't do a good job of recording experience in software design for othersto
use.

The purpose of this book isto record experience in designing object-oriented software as design patterns.
Each design pattern systematically names, explains, and evaluates an important and recurring designin
object-oriented systems. Our goal is to capture design experience in aform that people can use effectively.
To this end we have documented some of the most important design patterns and present them as a catal og.

Design patterns make it easier to reuse successful designs and architectures. Expressing proven technigues
as design patterns makes them more accessible to devel opers of new systems. Design patterns help you
choose design alternatives that make a system reusable and avoid alternatives that compromise reusability.
Design patterns can even improve the documentation and maintenance of existing systems by furnishing an
explicit specification of class and object interactions and their underlying intent. Put ssmply, design patterns
help adesigner get adesign "right” faster.

None of the design patternsin this book describes new or unproven designs. We have included only designs
that have been applied more than once in different systems. Most of these designs have never been
documented before. They are either part of the folklore of the object-oriented community or are elements of
some successful object-oriented systems—neither of which is easy for novice designersto learn from. So
although these designs aren't new, we capture them in a new and accessible way: as a catalog of design
patterns having a consistent format.

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chaplfs.htm (1 of 24) [21/08/2002 19:04:16]

javascript:loadApplet()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap1.htm#sec1-8
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap1.htm#sec1-7
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap1.htm#sec1-6
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap1.htm#sec1-5
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap1.htm#sec1-4
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap1.htm#sec1-3
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap1.htm#sec1-2
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap1.htm#sec1-1
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/helpfs.htm
javascript:build()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/patcafs.htm

Introduction

Despite the book's size, the design patternsin it capture only afraction of what an expert might know. It
doesn't have any patterns dealing with concurrency or distributed programming or real-time programming. It
doesn't have any application domain-specific patterns. It doesn't tell you how to build user interfaces, how to
write device drivers, or how to use an object-oriented database. Each of these areas has its own patterns, and
it would be worthwhile for someone to catal og those too.

v What is a Design Pattern?

Christopher Alexander says, "Each pattern describes a problem which occurs over and over again in our
environment, and then describes the core of the solution to that problem, in such away that you can use this
solution amillion times over, without ever doing it the same way twice" [AIS+77, page X]. Even though
Alexander was talking about patternsin buildings and towns, what he says s true about object-oriented
design patterns. Our solutions are expressed in terms of objects and interfaces instead of walls and doors, but
at the core of both kinds of patternsis a solution to a problem in a context.

In general, a pattern has four essential elements:

1. The pattern nameis ahandle we can use to describe a design problem, its solutions, and
conseguences in aword or two. Naming a pattern immediately increases our design vocabulary. It
lets us design at a higher level of abstraction. Having a vocabulary for patterns lets us talk about them
with our colleagues, in our documentation, and even to ourselves. It makes it easier to think about
designs and to communi cate them and their trade-offs to others. Finding good names has been one of
the hardest parts of developing our catalog.

2. The problem describes when to apply the pattern. It explains the problem and its context. It might
describe specific design problems such as how to represent algorithms as objects. It might describe
class or object structures that are symptomatic of an inflexible design. Sometimes the problem will
include alist of conditions that must be met before it makes sense to apply the pattern.

3. The solution describes the elements that make up the design, their relationships, responsibilities, and
collaborations. The solution doesn't describe a particular concrete design or implementation, because
apattern islike atemplate that can be applied in many different situations. Instead, the pattern
provides an abstract description of adesign problem and how a general arrangement of elements
(classes and objectsin our case) solvesiit.

4. The consequences are the results and trade-offs of applying the pattern. Though consequences are
often unvoiced when we describe design decisions, they are critical for evaluating design alternatives
and for understanding the costs and benefits of applying the pattern. The consequences for software
often concern space and time trade-offs. They may address language and implementation issues as
well. Since reuse is often afactor in object-oriented design, the consequences of a pattern include its
impact on a system's flexibility, extensibility, or portability. Listing these consequences explicitly
helps you understand and eval uate them.

Point of view affects one's interpretation of what is and isn't a pattern. One person’s pattern can be another
person's primitive building block. For this book we have concentrated on patterns at a certain level of
abstraction. Design patterns are not about designs such as linked lists and hash tables that can be encoded in
classes and reused asis. Nor are they complex, domain-specific designs for an entire application or
subsystem. The design patterns in this book are descriptions of communicating objects and classes that are
customized to solve a general design problemin a particular context.

A design pattern names, abstracts, and identifies the key aspects of a common design structure that make it
useful for creating a reusable object-oriented design. The design pattern identifies the participating classes
and instances, their roles and collaborations, and the distribution of responsibilities. Each design pattern
focuses on a particular object-oriented design problem or issue. It describes when it applies, whether it can
be applied in view of other design constraints, and the consequences and trade-offs of its use. Since we must

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chaplfs.htm (2 of 24) [21/08/2002 19:04:16]

Introduction

eventually implement our designs, a design pattern also provides sample C++ and (sometimes) Smalltalk
code to illustrate an implementation.

Although design patterns describe object-oriented designs, they are based on practical solutions that have
been implemented in mainstream object-oriented programming languages like Smalltalk and C++ rather
than procedural languages (Pascal, C, Ada) or more dynamic object-oriented languages (CLOS, Dylan,
Self). We chose Smalltalk and C++ for pragmatic reasons. Our day-to-day experience has been in these
languages, and they are increasingly popular.

The choice of programming language is important because it influences one's point of view. Our patterns
assume Smalltalk/C++-level language features, and that choice determines what can and cannot be
implemented easily. If we assumed procedural languages, we might have included design patterns called
"Inheritance," "Encapsulation,” and "Polymorphism.” Similarly, some of our patterns are supported directly
by the less common object-oriented languages. CL OS has multi-methods, for example, which lessen the
need for a pattern such as Visitor (page 331). In fact, there are enough differences between Smalltalk and
C++ to mean that some patterns can be expressed more easily in one language than the other. (See Iterator
(257) for an example.)

¥ Design Patterns in Smalltalk MVC

The Modéel/View/Controller (MVC) triad of classes [KP88] is used to build user interfaces in Smalltalk-80.
Looking at the design patternsinside MV C should help you see what we mean by the term "pattern.”

MV C consists of three kinds of objects. The Modél is the application object, the View isits screen
presentation, and the Controller defines the way the user interface reacts to user input. Before MV C, user
interface designs tended to lump these objects together. MV C decouples them to increase flexibility and
reuse.

MV C decouples views and models by establishing a subscribe/notify protocol between them. A view must
ensure that its appearance reflects the state of the model. Whenever the model's data changes, the model
notifies views that depend on it. In response, each view gets an opportunity to update itself. This approach
lets you attach multiple views to amodel to provide different presentations. Y ou can also create new views
for amodel without rewriting it.

The following diagram shows amodel and three views. (We've left out the controllers for ssimplicity.) The
model contains some data values, and the views defining a spreadsheet, histogram, and pie chart display
these datain various ways. The model communicates with its views when its values change, and the views
communicate with the model to access these values.

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chaplfs.htm (3 of 24) [21/08/2002 19:04:16]

Introduction

views

model

Taken at face value, this example reflects a design that decouples views from models. But the design is
applicable to amore general problem: decoupling objects so that changes to one can affect any number of
others without requiring the changed object to know details of the others. This more general designis
described by the Observer (page 293) design pattern.

Another feature of MV C is that views can be nested. For example, a control panel of buttons might be
implemented as a complex view containing nested button views. The user interface for an object inspector
can consist of nested views that may be reused in a debugger. MV C supports nested views with the
CompositeView class, a subclass of View. CompositeView objects act just like View objects; a composite
view can be used wherever aview can be used, but it also contains and manages nested views.

Again, we could think of this as adesign that lets us treat a composite view just like we treat one of its
components. But the design is applicable to amore general problem, which occurs whenever we want to
group objects and treat the group like an individual object. This more general design is described by the
Composite (163) design pattern. It lets you create a class hierarchy in which some subclasses define
primitive objects (e.g., Button) and other classes define composite objects (CompositeView) that assemble
the primitives into more complex objects.

MV C also lets you change the way a view responds to user input without changing its visual presentation.
Y ou might want to change the way it responds to the keyboard, for example, or have it use a pop-up menu
instead of command keys. MV C encapsulates the response mechanism in a Controller object. Thereisa
class hierarchy of controllers, making it easy to create a new controller as a variation on an existing one.

A view uses an instance of a Controller subclass to implement a particular response strategy; to implement a
different strategy, simply replace the instance with a different kind of controller. It's even possible to change
aview's controller at run-time to let the view change the way it responds to user input. For example, aview
can be disabled so that it doesn't accept input ssmply by giving it a controller that ignores input events.

The View-Controller relationship is an example of the Strategy (315) design pattern. A Strategy is an object

that represents an algorithm. It's useful when you want to replace the algorithm either statically or
dynamically, when you have alot of variants of the algorithm, or when the algorithm has complex data

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chaplfs.htm (4 of 24) [21/08/2002 19:04:16]

Introduction

structures that you want to encapsul ate.

MV C uses other design patterns, such as Factory Method (107) to specify the default controller classfor a
view and Decorator (175) to add scrolling to aview. But the main relationshipsin MV C are given by the
Observer, Composite, and Strategy design patterns.

v Describing Design Patterns

How do we describe design patterns? Graphical notations, while important and useful, aren't sufficient. They
simply capture the end product of the design process as relationships between classes and objects. To reuse
the design, we must also record the decisions, aternatives, and trade-offs that led to it. Concrete examples
are important too, because they help you see the design in action.

We describe design patterns using a consistent format. Each pattern is divided into sections according to the
following template. The template lends a uniform structure to the information, making design patterns easier
to learn, compare, and use.

Pattern Name and Classification
The pattern's name conveys the essence of the pattern succinctly. A good name isvital, because it
will become part of your design vocabulary. The pattern's classification reflects the scheme we
introduce in Section 1.5.

Intent
A short statement that answers the following questions: What does the design pattern do? What isits
rationale and intent? What particular design issue or problem does it address?

Also Known As
Other well-known names for the pattern, if any.

Motivation
A scenario that illustrates a design problem and how the class and object structures in the pattern
solve the problem. The scenario will help you understand the more abstract description of the pattern
that follows.

Applicability
What are the situations in which the design pattern can be applied? What are examples of poor
designs that the pattern can address? How can you recognize these situations?

Structure
A graphical representation of the classes in the pattern using a notation based on the Object Modeling
Technique (OMT) [RBP+91]. We aso use interaction diagrams [JCJO92, Boo94] to illustrate
sequences of requests and collaborations between objects. Appendix B describes these notationsin
detail.

Participants
The classes and/or objects participating in the design pattern and their responsibilities.

Collaborations
How the participants collaborate to carry out their responsibilities.

Consequences
How does the pattern support its objectives? What are the trade-offs and results of using the pattern?
What aspect of system structure does it let you vary independently?

Implementation

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chaplfs.htm (5 of 24) [21/08/2002 19:04:16]

Introduction

What pitfals, hints, or techniques should you be aware of when implementing the pattern? Are there
language-specific issues?

Sample Code
Code fragments that illustrate how you might implement the pattern in C++ or Smalltalk.

Known Uses
Examples of the pattern found in real systems. We include at least two examples from different
domains.

Related Patterns
What design patterns are closely related to this one? What are the important differences? With which
other patterns should this one be used?

The appendices provide background information that will help you understand the patterns and the
discussions surrounding them. Appendix A isaglossary of terminology we use. We've already mentioned

Appendix B, which presents the various notations. We'll also describe aspects of the notations as we
introduce them in the upcoming discussions. Finally, Appendix C contains source code for the foundation
classes we use in code samples.

v The Catalog of Design Patterns

The catalog beginning on page 79 contains 23 design patterns. Their names and intents are listed next to give

you an overview. The number in parentheses after each pattern name gives the page number for the pattern
(aconvention we follow throughout the book).

Abstract Factory (87)

Provide an interface for creating families of related or dependent objects without specifying their
concrete classes.

Adapter (139

Convert the interface of a classinto another interface clients expect. Adapter lets classes work
together that couldn't otherwise because of incompatible interfaces.

Bridge (151)

Decouple an abstraction from its implementation so that the two can vary independently.

Builder (97)

Separate the construction of acomplex object from its representation so that the same construction
process can create different representations.

Chain of Responsibility (223)
Avoid coupling the sender of arequest to its receiver by giving more than one object a chance to
handle the request. Chain the receiving objects and pass the request along the chain until an object
handlesit.

Command (233)

Encapsulate a request as an object, thereby letting you parameterize clients with different requests,
gueue or log requests, and support undoable operations.

Composite (163)
Compose objects into tree structures to represent part-whole hierarchies. Composite lets clients treat
individual objects and compositions of objects uniformly.

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chaplfs.htm (6 of 24) [21/08/2002 19:04:16]

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/patcafs.htm

Introduction

Decorator (175)
Attach additional responsibilities to an object dynamically. Decorators provide aflexible alternative
to subclassing for extending functionality.

Facade (185)

Provide a unified interface to a set of interfaces in a subsystem. Facade defines a higher-level
interface that makes the subsystem easier to use.

Factory Method (107)
Define an interface for creating an object, but let subclasses decide which class to instantiate. Factory
Method lets a class defer instantiation to subclasses.

Flyweight (195)
Use sharing to support large numbers of fine-grained objects efficiently.

Interpreter (243)
Given alanguage, define arepresention for its grammar along with an interpreter that uses the
representation to interpret sentences in the language.

Iterator (257)

Provide away to access the elements of an aggregate object sequentially without exposing its
underlying representation.

Mediator (273)
Define an object that encapsulates how a set of objects interact. Mediator promotes |oose coupling by
keeping objects from referring to each other explicitly, and it lets you vary their interaction
independently.

M emento (283)
Without violating encapsulation, capture and externalize an object's internal state so that the object
can be restored to this state later.

Observer (293)
Define a one-to-many dependency between objects so that when one object changes state, al its
dependents are notified and updated automatically.

Prototype (117)
Specify the kinds of objects to create using a prototypical instance, and create new objects by
copying this prototype.

Proxy (207)

Provide a surrogate or placeholder for another object to control accessto it.

Singleton (127)
Ensure a class only has one instance, and provide aglobal point of accessto it.

State g305)

Allow an object to alter its behavior when itsinternal state changes. The object will appear to change
its class.

Strat 315
Define afamily of algorithms, encapsul ate each one, and make them interchangeable. Strategy lets
the algorithm vary independently from clients that useit.

Template M ethod (325)

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chaplfs.htm (7 of 24) [21/08/2002 19:04:16]

Introduction

Define the skeleton of an algorithm in an operation, deferring some steps to subclasses. Template
Method lets subclasses redefine certain steps of an algorithm without changing the algorithm's
structure.

Visitor (331)

Represent an operation to be performed on the elements of an object structure. Visitor lets you define
anew operation without changing the classes of the elements on which it operates.

v Organizing the Catalog

Design patterns vary in their granularity and level of abstraction. Because there are many design patterns, we
need away to organize them. This section classifies design patterns so that we can refer to families of

related patterns. The classification helps you learn the patternsin the catalog faster, and it can direct efforts
to find new patterns as well.

We classify design patterns by two criteria (Table 1.1). The first criterion, called pur pose, reflects what a

pattern does. Patterns can have either creational, structural, or behavioral purpose. Creationa patterns
concern the process of object creation. Structural patterns deal with the composition of classes or objects.
Behavioral patterns characterize the ways in which classes or objects interact and distribute responsibility.

Purpose

Factory Method (107) | Adapter (139) I nterpreter (243)

clEEs Template Method (325)
Abstract Factory (87) | Adapter (139) Chain of Responsihility (223)
Builder (97) Bridge (151) Command (233)
Prototype (117) Composite (163) | Iterator (257)
Scope Singleton (127) Decorator (175) | Mediator (273)
: Facade (185) Memento (283)
Sidje Proxy (207) | Elyweight (195
Observer (293)
State (305)
Strat: 315
Visitor (331)

Table 1.1: Design pattern space

The second criterion, called scope, specifies whether the pattern applies primarily to classes or to objects.
Class patterns deal with relationships between classes and their subclasses. These relationships are
established through inheritance, so they are static—fixed at compile-time. Object patterns deal with object
relationships, which can be changed at run-time and are more dynamic. Almost all patterns use inheritance
to some extent. So the only patterns labeled "class patterns' are those that focus on class relationships. Note
that most patterns are in the Object scope.

Creational class patterns defer some part of object creation to subclasses, while Creational object patterns
defer it to another object. The Structural class patterns use inheritance to compose classes, while the
Structural object patterns describe ways to assemble objects. The Behavioral class patterns use inheritance to
describe agorithms and flow of control, whereas the Behavioral object patterns describe how a group of
objects cooperate to perform atask that no single object can carry out alone.

There are other ways to organize the patterns. Some patterns are often used together. For example,
Compositeis often used with Iterator or Visitor. Some patterns are alternatives. Prototype is often an

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chaplfs.htm (8 of 24) [21/08/2002 19:04:17]

Introduction

alternative to Abstract Factory. Some patterns result in similar designs even though the patterns have
different intents. For example, the structure diagrams of Composite and Decorator are similar.

Y et another way to organize design patternsis according to how they reference each other in their "Related
Patterns" sections. Figure 1.1 depicts these relationships graphically.

Clearly there are many ways to organize design patterns. Having multiple ways of thinking about patterns
will deepen your insight into what they do, how they compare, and when to apply them.

/,,-——4'- Memento Proxy
salfr.‘.'?g state Adapter
Builder Nr{ﬂQ \
Aloidlin .
\ craaing fterator h_l.-'.iferei'a Bridge
canposites h
anmarating
children
4 canooged
o ects using Command
/ to objects
shiar 0 _‘_‘__\-L"‘x
Decorator rimg o . S
Elal.ra.lr-sal's tha chein
Flyweight fmwngr Vigitor
changing skin }
VErsls quts
adaing
sharing Interpreter |————— opefalions Chain of Responsibility
strateqies
(ferming ,j
Strategy i
f 5
e
\ Wx
panency
FrERAGETENT Observer
definin State
aﬂga.'?nﬁqm'a
ﬁl'ﬂﬁ'sw-..,___‘____‘—
Template Method — offern uses
Prototype
‘__E::;‘rmyura factory z-"‘"_——-. Factory Method
cyrmmlcaty implament using
|

,.rf"" Abstract Factory

sifgla
fnatanse

e Facade
singla

/ irmstances
Singla‘[ﬂn //"-F

Figure 1.1: Design pattern relationships

v How Design Patterns Solve Design Problems

Design patterns solve many of the day-to-day problems object-oriented designers face, and in many different
ways. Here are severa of these problems and how design patterns solve them.

Finding Appropriate Objects

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chaplfs.htm (9 of 24) [21/08/2002 19:04:17]

Introduction

Object-oriented programs are made up of objects. An object packages both data and the procedures that
operate on that data. The procedures are typically called methods or operations. An object performs an
operation when it receives arequest (or message) from aclient.

Requests are the only way to get an object to execute an operation. Operations are the only way to change an
object'sinternal data. Because of these restrictions, the object's internal state is said to be encapsulated; it

cannot be accessed directly, and its representation is invisible from outside the object.

The hard part about object-oriented design is decomposing a system into objects. The task is difficult
because many factors come into play: encapsulation, granularity, dependency, flexibility, performance,
evolution, reusability, and on and on. They all influence the decomposition, often in conflicting ways.

Object-oriented design methodol ogies favor many different approaches. Y ou can write a problem statement,
single out the nouns and verbs, and create corresponding classes and operations. Or you can focus on the
collaborations and responsibilities in your system. Or you can model the real world and tranglate the objects
found during analysisinto design. There will aways be disagreement on which approach is best.

Many objects in a design come from the analysis model. But object-oriented designs often end up with
classes that have no counterpartsin the real world. Some of these are low-level classes like arrays. Others
are much higher-level. For example, the Composite (163) pattern introduces an abstraction for treating
objects uniformly that doesn't have a physical counterpart. Strict modeling of the real world leadsto a
system that reflects today's realities but not necessarily tomorrow's. The abstractions that emerge during
design are key to making a design flexible.

Design patterns help you identify less-obvious abstractions and the objects that can capture them. For
example, objects that represent a process or algorithm don't occur in nature, yet they are acrucia part of
flexible designs. The Strategy (315) pattern describes how to implement interchangeabl e families of

algorithms. The State (305) pattern represents each state of an entity as an object. These objects are seldom

found during analysis or even the early stages of design; they're discovered later in the course of making a
design more flexible and reusable.

Determining Object Granularity

Objects can vary tremendously in size and number. They can represent everything down to the hardware or
all the way up to entire applications. How do we decide what should be an object?

Design patterns address thisissue as well. The Facade (185) pattern describes how to represent complete
subsystems as objects, and the Flyweight (195) pattern describes how to support huge numbers of objects at
the finest granularities. Other design patterns describe specific ways of decomposing an object into smaller
objects. Abstract Factory (87) and Builder (97) yield objects whose only responsibilities are creating other
objects. Visitor (331) and Command (233) yield objects whose only responsibilities are to implement a
reguest on another object or group of objects.

Specifying Object Interfaces

Every operation declared by an object specifies the operation’'s name, the objects it takes as parameters, and
the operation's return value. Thisis known as the operation's signature. The set of all signatures defined by

an object's operationsis called the interface to the object. An object’s interface characterizes the complete set

of requests that can be sent to the object. Any request that matches a signature in the object's interface may
be sent to the object.

A typeis aname used to denote a particular interface. We speak of an object as having the type "Window" if

it accepts all requests for the operations defined in the interface named "Window." An object may have
many types, and widely different objects can share atype. Part of an object's interface may be characterized

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chaplfs.htm (10 of 24) [21/08/2002 19:04:17]

Introduction

by one type, and other parts by other types. Two objects of the same type need only share parts of their
interfaces. Interfaces can contain other interfaces as subsets. We say that atype is a subtype of another if its
interface contains the interface of its supertype. Often we speak of a subtype inheriting the interface of its
supertype.

Interfaces are fundamental in object-oriented systems. Objects are known only through their interfaces.
There is no way to know anything about an object or to ask it to do anything without going through its
interface. An object's interface says nothing about its implementation—different objects are free to
implement requests differently. That means two objects having completely different implementations can
have identical interfaces.

When arequest is sent to an object, the particular operation that's performed depends on both the request
and the receiving object. Different objects that support identical requests may have different
implementations of the operations that fulfill these requests. The run-time association of arequest to an
object and one of its operations is known as dynamic binding.

Dynamic binding means that issuing a request doesn't commit you to a particular implementation until run-
time. Consequently, you can write programs that expect an object with a particular interface, knowing that
any object that has the correct interface will accept the request. Moreover, dynamic binding lets you
substitute objects that have identical interfaces for each other at run-time. This substitutability is known as
polymorphism, and it's a key concept in object-oriented systems. It lets a client object make few assumptions
about other objects beyond supporting a particular interface. Polymorphism simplifies the definitions of
clients, decouples objects from each other, and lets them vary their relationships to each other at run-time.

Design patterns help you define interfaces by identifying their key elements and the kinds of data that get
sent across an interface. A design pattern might also tell you what not to put in the interface. The Memento
(283) pattern is agood example. It describes how to encapsul ate and save the internal state of an object so
that the object can be restored to that state later. The pattern stipulates that Memento objects must define two
interfaces. arestricted one that lets clients hold and copy mementos, and a privileged one that only the
original object can use to store and retrieve state in the memento.

Design patterns a so specify relationships between interfaces. In particular, they often require some classes
to have similar interfaces, or they place constraints on the interfaces of some classes. For example, both
Decorator (175) and Proxy (207) require the interfaces of Decorator and Proxy objects to be identical to the
decorated and proxied objects. In Visitor (331), the Visitor interface must reflect al classes of objects that
visitors can visit.

Specifying Object Implementations

So far we've said little about how we actually define an object. An object's implementation is defined by its
class. The class specifies the object's internal data and representation and defines the operations the object

can perform.

Our OMT-based notation (summarized in Appendix B) depicts a class as a rectangle with the class namein

bold. Operations appear in normal type below the class name. Any data that the class defines comes after the
operations. Lines separate the class name from the operations and the operations from the data:

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chaplfs.htm (11 of 24) [21/08/2002 19:04:17]

Introduction

ClassMName

Cperation1i)
Type Operation2()

instanceVariablae
Type instanceVariablez

Return types and instance variable types are optional, since we don't assume a statically typed
implementation language.

Objects are created by instantiating a class. The object is said to be an instance of the class. The process of
instantiating a class allocates storage for the object's internal data (made up of instance variables) and
associates the operations with these data. Many similar instances of an object can be created by instantiating
aclass.

A dashed arrowhead line indicates a class that instantiates objects of another class. The arrow points to the
class of the instantiated objects.

Instantiator |F---------- = Instantiatee

New classes can be defined in terms of existing classes using class inheritance. When a subclass inherits
from a parent class, it includes the definitions of all the data and operations that the parent class defines.

Objects that are instances of the subclass will contain all data defined by the subclass and its parent classes,
and they'll be able to perform all operations defined by this subclass and its parents. We indicate the subclass
relationship with avertical line and atriangle:

ParentClass

Cperation()

£

Subclass

An abstract class is one whose main purpose is to define a common interface for its subclasses. An abstract
classwill defer some or all of itsimplementation to operations defined in subclasses; hence an abstract class
cannot be instantiated. The operations that an abstract class declares but doesn't implement are called
abstract operations. Classes that aren't abstract are called concrete classes.

Subclasses can refine and redefine behaviors of their parent classes. More specifically, a class may override
an operation defined by its parent class. Overriding gives subclasses a chance to handle requests instead of
their parent classes. Class inheritance lets you define classes simply by extending other classes, making it
easy to define families of objects having related functionality.

The names of abstract classes appear in slanted type to distinguish them from concrete classes. Slanted type
is aso used to denote abstract operations. A diagram may include pseudocode for an operation's
implementation; if so, the code will appear in a dog-eared box connected by a dashed line to the operation it

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chaplfs.htm (12 of 24) [21/08/2002 19:04:17]

Introduction

implements.

AbstractClass
COoeration(}
ConcreteSubclass
. implementation
Operation() @----{-----------1 aadounte

A mixin classisaclassthat's intended to provide an optional interface or functionality to other classes. It's

similar to an abstract classin that it's not intended to be instantiated. Mixin classes require multiple
inheritance:

ExistingClass Mixin

ExigtingOpearation{} MixinCparation(}

A . A

AugmentedClass

ExistingOperation()
MixinOperation|)

Class versus Interface Inheritance

It's important to understand the difference between an object's class and its type.

An object's class defines how the object isimplemented. The class defines the object's internal state and the
implementation of its operations. In contrast, an object's type only refersto its interface—the set of requests
to which it can respond. An object can have many types, and objects of different classes can have the same

type.

Of course, there's a close relationship between class and type. Because a class defines the operations an
object can perform, it also defines the object’s type. When we say that an object is an instance of a class, we
imply that the object supports the interface defined by the class.

Languages like C++ and Eiffel use classes to specify both an object's type and its implementation. Smalltalk
programs do not declare the types of variables; consequently, the compiler does not check that the types of
objects assigned to a variable are subtypes of the variable's type. Sending a message requires checking that
the class of the receiver implements the message, but it doesn't require checking that the receiver isan
instance of a particular class.

It's also important to understand the difference between class inheritance and interface inheritance (or
subtyping). Class inheritance defines an object's implementation in terms of another object's implementation.
In short, it's a mechanism for code and representation sharing. In contrast, interface inheritance (or
subtyping) describes when an object can be used in place of another.

It's easy to confuse these two concepts, because many languages don't make the distinction explicit. In

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chaplfs.htm (13 of 24) [21/08/2002 19:04:17]

Introduction

languages like C++ and Eiffel, inheritance means both interface and implementation inheritance. The
standard way to inherit an interface in C++ isto inherit publicly from a class that has (pure) virtual member
functions. Pure interface inheritance can be approximated in C++ by inheriting publicly from pure abstract
classes. Pure implementation or class inheritance can be approximated with private inheritance. In Smalltalk,
inheritance means just implementation inheritance. Y ou can assign instances of any classto avariable as
long as those instances support the operation performed on the value of the variable.

Although most programming languages don't support the distinction between interface and implementation
inheritance, people make the distinction in practice. Smalltalk programmers usually act asif subclasses were
subtypes (though there are some well-known exceptions [Co092]); C++ programmers manipulate objects
through types defined by abstract classes.

Many of the design patterns depend on this distinction. For example, objectsin a Chain of Responsibility
(223) must have a common type, but usually they don't share a common implementation. In the Composite
(163) pattern, Component defines a common interface, but Composite often defines acommon
implementation. Command (233), Observer (293), State (305), and Strategy (315) are often implemented
with abstract classes that are pure interfaces.

Programming to an Interface, not an Implementation

Classinheritance is basically just a mechanism for extending an application's functionality by reusing
functionality in parent classes. It lets you define a new kind of object rapidly in terms of an old one. It lets
you get new implementations almost for free, inheriting most of what you need from existing classes.

However, implementation reuse is only half the story. Inheritance's ability to define families of objects with
identical interfaces (usualy by inheriting from an abstract class) is aso important. Why? Because
polymorphism depends on it.

When inheritance is used carefully (some will say properly), al classes derived from an abstract class will
shareitsinterface. Thisimplies that a subclass merely adds or overrides operations and does not hide
operations of the parent class. All subclasses can then respond to the requests in the interface of this abstract
class, making them all subtypes of the abstract class.

There are two benefits to manipulating objects solely in terms of the interface defined by abstract classes:

1. Clientsremain unaware of the specific types of objects they use, aslong as the objects adhere to the
interface that clients expect.

2. Clients remain unaware of the classes that implement these objects. Clients only know about the
abstract class(es) defining the interface.

This so greatly reduces implementation dependencies between subsystems that it leads to the following
principle of reusable object-oriented design:

Programto an interface, not an implementation.

Don't declare variables to be instances of particular concrete classes. Instead, commit only to an interface
defined by an abstract class. Y ou will find this to be a common theme of the design patterns in this book.

Y ou have to instantiate concrete classes (that is, specify a particular implementation) somewhere in your
system, of course, and the creational patterns (Abstract Factory (87), Builder (97), Factory Method (107),
Prototype (117), and Singleton (127) let you do just that. By abstracting the process of object creation, these
patterns give you different ways to associate an interface with its implementation transparently at
instantiation. Creational patterns ensure that your system is written in terms of interfaces, not
implementations.

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chaplfs.htm (14 of 24) [21/08/2002 19:04:17]

Introduction

Putting Reuse Mechanisms to Work

Most people can understand concepts like objects, interfaces, classes, and inheritance. The challenge liesin
applying them to build flexible, reusable software, and design patterns can show you how.

Inheritance versus Composition

The two most common techniques for reusing functionality in object-oriented systems are class inheritance
and object composition. As we've explained, class inheritance lets you define the implementation of one

classin terms of another's. Reuse by subclassing is often referred to as white-box reuse. The term "white-
box" refersto visibility: With inheritance, the internals of parent classes are often visible to subclasses.

Object composition is an aternative to class inheritance. Here, new functionality is obtained by assembling
or composing objects to get more complex functionality. Object composition requires that the objects being
composed have well-defined interfaces. This style of reuse is called black-box reuse, because no internal
details of objects are visible. Objects appear only as "black boxes."

Inheritance and composition each have their advantages and disadvantages. Class inheritance is defined
statically at compile-time and is straightforward to use, sinceit's supported directly by the programming
language. Class inheritance also makes it easier to modify the implementation being reused. When a
subclass overrides some but not all operations, it can affect the operationsit inherits as well, assuming they
call the overridden operations.

But class inheritance has some disadvantages, too. First, you can't change the implementations inherited
from parent classes at run-time, because inheritance is defined at compile-time. Second, and generaly
worse, parent classes often define at least part of their subclasses' physical representation. Because
inheritance exposes a subclass to details of its parent's implementation, it's often said that "inheritance
breaks encapsulation” [Sny86]. The implementation of a subclass becomes so bound up with the
implementation of its parent class that any change in the parent's implementation will force the subclass to
change.

Implementation dependencies can cause problems when you're trying to reuse a subclass. Should any aspect
of the inherited implementation not be appropriate for new problem domains, the parent class must be
rewritten or replaced by something more appropriate. This dependency limits flexibility and ultimately
reusability. One cure for thisisto inherit only from abstract classes, since they usually provide little or no
implementation.

Object composition is defined dynamically at run-time through objects acquiring references to other objects.
Composition requires objects to respect each others' interfaces, which in turn requires carefully designed
interfaces that don't stop you from using one object with many others. But there is a payoff. Because objects
are accessed solely through their interfaces, we don't break encapsulation. Any object can be replaced at run-
time by another as long asit has the same type. Moreover, because an object's implementation will be
written in terms of object interfaces, there are substantially fewer implementation dependencies.

Object composition has another effect on system design. Favoring object composition over class inheritance
helps you keep each class encapsulated and focused on one task. Y our classes and class hierarchies will
remain small and will be less likely to grow into unmanageable monsters. On the other hand, a design based
on object composition will have more objects (if fewer classes), and the system's behavior will depend on
their interrelationships instead of being defined in one class.

That leads us to our second principle of object-oriented design:
Favor object composition over class inheritance.

Ideally, you shouldn't have to create new components to achieve reuse. Y ou should be able to get all the
functionality you need just by assembling existing components through object composition. But thisis rarely

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chaplfs.htm (15 of 24) [21/08/2002 19:04:17]

Introduction

the case, because the set of available componentsis never quite rich enough in practice. Reuse by
inheritance makes it easier to make new components that can be composed with old ones. Inheritance and
object composition thus work together.

Nevertheless, our experience is that designers overuse inheritance as a reuse technique, and designs are often
made more reusable (and simpler) by depending more on object composition. Y ou'll see object composition
applied again and again in the design patterns.

Delegation

Delegation isaway of making composition as powerful for reuse as inheritance [Lie86, JZ91]. In
delegation, two objects are involved in handling a request: areceiving object delegates operations to its
delegate. Thisis analogous to subclasses deferring requests to parent classes. But with inheritance, an
inherited operation can always refer to the receiving object through thet hi s member variable in C++ and
sel f in Smalltalk. To achieve the same effect with delegation, the receiver passesitself to the delegate to
let the delegated operation refer to the receiver.

For example, instead of making class Window a subclass of Rectangle (because windows happen to be
rectangular), the Window class might reuse the behavior of Rectangle by keeping a Rectangle instance
variable and delegating Rectangle-specific behavior to it. In other words, instead of a Window being a
Rectangle, it would have a Rectangle. Window must now forward requests to its Rectangle instance
explicitly, whereas before it would have inherited those operations.

The following diagram depicts the Window class delegating its Area operation to a Rectangle instance.

Window Rectangie
rectangls -
Areaf) Area() 9
i widith :
| newnt |
| T
| |
1 1
! !
e e
retum rectangle—=Areal) return width * height

A plain arrowhead line indicates that a class keeps a reference to an instance of another class. The reference
has an optional name, "rectangle” in this case.

The main advantage of delegation isthat it makesit easy to compose behaviors at run-time and to change the
way they're composed. Our window can become circular at run-time simply by replacing its Rectangle
instance with a Circle instance, assuming Rectangle and Circle have the same type.

Delegation has a disadvantage it shares with other techniques that make software more flexible through
object composition: Dynamic, highly parameterized software is harder to understand than more static
software. There are also run-time inefficiencies, but the human inefficiencies are more important in the long
run. Delegation is a good design choice only when it simplifies more than it complicates. It isn't easy to give
rules that tell you exactly when to use delegation, because how effective it will be depends on the context
and on how much experience you have with it. Delegation works best when it's used in highly stylized
ways—that is, in standard patterns.

Severa design patterns use delegation. The State (305), Strategy (315), and Visitor (331) patterns depend on

it. In the State pattern, an object delegates requests to a State object that representsiits current state. In the
Strategy pattern, an object delegates a specific request to an object that represents a strategy for carrying out

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chaplfs.htm (16 of 24) [21/08/2002 19:04:17]

Introduction

the request. An object will only have one state, but it can have many strategies for different requests. The
purpose of both patternsis to change the behavior of an object by changing the objects to which it delegates
requests. In Visitor, the operation that gets performed on each element of an object structure is always
delegated to the Visitor object.

Other patterns use delegation less heavily. Mediator (273) introduces an object to mediate communication

between other objects. Sometimes the Mediator object implements operations simply by forwarding them to
the other objects; other timesit passes along areference to itself and thus uses true delegation. Chain of
Responsibility (223) handles requests by forwarding them from one object to another along a chain of
objects. Sometimes this request carries with it areference to the origina object receiving the request, in
which case the pattern is using delegation. Bridge (151) decouples an abstraction from its implementation. If

the abstraction and a particular implementation are closely matched, then the abstraction may simply
delegate operations to that implementation.

Delegation is an extreme example of object composition. It shows that you can always replace inheritance
with object composition as a mechanism for code reuse.

Inheritance versus Parameterized Types

Another (not strictly object-oriented) technique for reusing functionality is through parameterized types, also
known as generics (Ada, Eiffel) and templates (C++). This technigue lets you define a type without
specifying all the other typesit uses. The unspecified types are supplied as parameters at the point of use.
For example, aList class can be parameterized by the type of elementsit contains. To declare alist of
integers, you supply the type "integer" as a parameter to the List parameterized type. To declare alist of
String objects, you supply the "String" type as a parameter. The language implementation will create a
customized version of the List class template for each type of element.

Parameterized types give us athird way (in addition to class inheritance and object composition) to compose
behavior in object-oriented systems. Many designs can be implemented using any of these three techniques.
To parameterize a sorting routine by the operation it uses to compare elements, we could make the
comparison

1. an operation implemented by subclasses (an application of Template Method (325),

2. theresponsibility of an object that's passed to the sorting routine (Strategy (315), or

3. an argument of a C++ template or Ada generic that specifies the name of the function to call to
compare the elements.

There are important differences between these techniques. Object composition lets you change the behavior
being composed at run-time, but it also requires indirection and can be less efficient. Inheritance lets you
provide default implementations for operations and lets subclasses override them. Parameterized types |et
you change the types that a class can use. But neither inheritance nor parameterized types can change at run-
time. Which approach is best depends on your design and implementation constraints.

None of the patternsin this book concerns parameterized types, though we use them on occasion to
customize a pattern's C++ implementation. Parameterized types aren't needed at all in alanguage like
Smalltalk that doesn't have compile-time type checking.

Relating Run-Time and Compile-Time Structures

An object-oriented program'’s run-time structure often bears little resemblance to its code structure. The code
structure is frozen at compile-time; it consists of classesin fixed inheritance relationships. A program's run-
time structure consists of rapidly changing networks of communicating objects. In fact, the two structures
are largely independent. Trying to understand one from the other is like trying to understand the dynamism

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chaplfs.htm (17 of 24) [21/08/2002 19:04:17]

Introduction

of living ecosystems from the static taxonomy of plants and animals, and vice versa.

Consider the distinction between object aggregation and acquaintance and how differently they manifest
themselves at compile- and run-times. Aggregation implies that one object owns or is responsible for
another object. Generally we speak of an object having or being part of another object. Aggregation implies
that an aggregate object and its owner have identical lifetimes.

Acquaintance implies that an object merely knows of another object. Sometimes acquaintance is called
"association” or the "using" relationship. Acquainted objects may request operations of each other, but they
aren't responsible for each other. Acquaintance is a weaker relationship than aggregation and suggests much
looser coupling between objects.

In our diagrams, a plain arrowhead line denotes acquaintance. An arrowhead line with adiamond at its base
denotes aggregation:

aggregateinstance
Aggregator [M~ Aggregatee

It's easy to confuse aggregation and acquaintance, because they are often implemented in the same way. In
Smalltalk, all variables are references to other objects. There's no distinction in the programming language
between aggregation and acquaintance. In C++, aggregation can be implemented by defining member
variables that are real instances, but it's more common to define them as pointers or references to instances.
Acquaintance is implemented with pointers and references as well.

Ultimately, acquaintance and aggregation are determined more by intent than by explicit language
mechanisms. The distinction may be hard to see in the compile-time structure, but it's significant.
Aggregation relationships tend to be fewer and more permanent than acquaintance. Acquaintances, in
contrast, are made and remade more frequently, sometimes existing only for the duration of an operation.
Acquaintances are more dynamic as well, making them more difficult to discern in the source code.

With such disparity between a program's run-time and compile-time structures, it's clear that code won't
reveal everything about how a system will work. The system's run-time structure must be imposed more by
the designer than the language. The relationships between objects and their types must be designed with
great care, because they determine how good or bad the run-time structureis.

Many design patterns (in particular those that have object scope) capture the distinction between compile-
time and run-time structures explicitly. Composite (163) and Decorator (175) are especially useful for

building complex run-time structures. Observer (293) involves run-time structures that are often hard to
understand unless you know the pattern. Chain of Responsibility (223) also resultsin communication

patterns that inheritance doesn't reveal. In general, the run-time structures aren't clear from the code until
you understand the patterns.

Designing for Change

The key to maximizing reuse lies in anticipating new requirements and changes to existing requirements,
and in designing your systems so that they can evolve accordingly.

To design the system so that it's robust to such changes, you must consider how the system might need to
change over itslifetime. A design that doesn't take change into account risks major redesign in the future.
Those changes might involve class redefinition and reimplementation, client modification, and retesting.
Redesign affects many parts of the software system, and unanticipated changes are invariably expensive.

Design patterns help you avoid this by ensuring that a system can change in specific ways. Each design
pattern lets some aspect of system structure vary independently of other aspects, thereby making a system

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chaplfs.htm (18 of 24) [21/08/2002 19:04:17]

Introduction

more robust to a particular kind of change.
Here are some common causes of redesign along with the design pattern(s) that address them:
1. Creating an object by specifying a class explicitly. Specifying a class name when you create an object
commits you to a particular implementation instead of a particular interface. This commitment can

complicate future changes. To avoid it, create objects indirectly.

Design patterns: Abstract Factory (87), Factory Method (107), Prototype (117).

2. Dependence on specific operations. When you specify a particular operation, you commit to one way
of satisfying arequest. By avoiding hard-coded requests, you make it easier to change the way a
request gets satisfied both at compile-time and at run-time.

Design patterns: Chain of Responsibility (223), Command (233).

3. Dependence on hardware and software platform. External operating system interfaces and
application programming interfaces (APIs) are different on different hardware and software
platforms. Software that depends on a particular platform will be harder to port to other platforms. It
may even be difficult to keep it up to date on its native platform. It'simportant therefore to design
your system to limit its platform dependencies.

Design patterns: Abstract Factory (87), Bridge (151).

4. Dependence on object representations or implementations. Clients that know how an object is
represented, stored, located, or implemented might need to be changed when the object changes.
Hiding this information from clients keeps changes from cascading.

Design patterns: Abstract Factory (87), Bridge (151), Memento (283), Proxy (207).

5. Algorithmic dependencies. Algorithms are often extended, optimized, and replaced during
development and reuse. Objects that depend on an agorithm will have to change when the algorithm
changes. Therefore algorithms that are likely to change should be isolated.

Design patterns: Builder (97), Iterator (257), Strategy (315), Template Method (325), Visitor (331).

6. Tight coupling. Classes that are tightly coupled are hard to reuse in isolation, since they depend on
each other. Tight coupling leads to monolithic systems, where you can't change or remove a class
without understanding and changing many other classes. The system becomes a dense mass that's
hard to learn, port, and maintain.

L oose coupling increases the probability that a class can be reused by itself and that a system can be
learned, ported, modified, and extended more easily. Design patterns use techniques such as abstract
coupling and layering to promote loosely coupled systems.

Design patterns: Abstract Factory (87), Bridge (151), Chain of Responsibility (223), Command (233),
Facade (185), Mediator (273), Observer (293).

7. Extending functionality by subclassing. Customizing an object by subclassing often isn't easy. Every
new class has afixed implementation overhead (initialization, finalization, etc.). Defining a subclass
also requires an in-depth understanding of the parent class. For example, overriding one operation
might require overriding another. An overridden operation might be required to call an inherited
operation. And subclassing can lead to an explosion of classes, because you might have to introduce
many new subclasses for even a simple extension.

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chaplfs.htm (19 of 24) [21/08/2002 19:04:17]

Introduction

Object composition in general and delegation in particular provide flexible alternatives to inheritance
for combining behavior. New functionality can be added to an application by composing existing
objects in new ways rather than by defining new subclasses of existing classes. On the other hand,
heavy use of object composition can make designs harder to understand. Many design patterns
produce designs in which you can introduce customized functionality just by defining one subclass
and composing its instances with existing ones.

Design patterns: Bridge (151), Chain of Responsibility (223), Composite (163), Decorator (175),
Observer (293), Strategy (315).

8. Inability to alter classes conveniently. Sometimes you have to modify a class that can't be modified
conveniently. Perhaps you need the source code and don't have it (as may be the case with a
commercia class library). Or maybe any change would require modifying lots of existing subclasses.
Design patterns offer ways to modify classes in such circumstances.

Design patterns: Adapter (139), Decorator (175), Visitor (331).

These examples reflect the flexibility that design patterns can help you build into your software. How crucial
such flexibility is depends on the kind of software you're building. Let's look at the role design patterns play
in the development of three broad classes of software: application programs, toolkits, and frameworks.

Application Programs

If you're building an application program such as a document editor or spreadsheet, then internal reuse,
maintainability, and extension are high priorities. Internal reuse ensures that you don't design and implement
any more than you have to. Design patterns that reduce dependencies can increase internal reuse. Looser
coupling boosts the likelihood that one class of object can cooperate with several others. For example, when
you eliminate dependencies on specific operations by isolating and encapsulating each operation, you make
it easier to reuse an operation in different contexts. The same thing can happen when you remove
algorithmic and representational dependencies too.

Design patterns also make an application more maintainable when they're used to limit platform
dependencies and to layer a system. They enhance extensibility by showing you how to extend class
hierarchies and how to exploit object composition. Reduced coupling also enhances extensibility. Extending
aclassinisolation iseasier if the class doesn't depend on lots of other classes.

Toolkits

Often an application will incorporate classes from one or more libraries of predefined classes called toolkits.
A toolkit isaset of related and reusable classes designed to provide useful, general-purpose functionality.
An example of atoolkit isa set of collection classesfor lists, associative tables, stacks, and the like. The
C++ 1/0O stream library is another example. Toolkits don't impose a particular design on your application;
they just provide functionality that can help your application do itsjob. They let you as an implementer
avoid recoding common functionality. Toolkits emphasize code reuse. They are the object-oriented
equivalent of subroutine libraries.

Toolkit design is arguably harder than application design, because toolkits have to work in many
applications to be useful. Moreover, the toolkit writer isn't in a position to know what those applications will
be or their specia needs. That makesit all the more important to avoid assumptions and dependencies that
can limit the toolkit's flexibility and consequently its applicability and effectiveness.

Frameworks
A framework is a set of cooperating classes that make up areusable design for a specific class of software

[Deu89, JF88]. For example, aframework can be geared toward building graphical editors for different
domains like artistic drawing, music composition, and mechanical CAD [VL90, Joh92]. Another framework

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chaplfs.htm (20 of 24) [21/08/2002 19:04:17]

Introduction

can help you build compilers for different programming languages and target machines [JML92]. Y et
another might help you build financial modeling applications [BE93]. Y ou customize aframework to a
particular application by creating application-specific subclasses of abstract classes from the framework.

The framework dictates the architecture of your application. It will define the overall structure, its
partitioning into classes and objects, the key responsibilities thereof, how the classes and objects collaborate,
and the thread of control. A framework predefines these design parameters so that you, the application
designer/implementer, can concentrate on the specifics of your application. The framework captures the
design decisions that are common to its application domain. Frameworks thus emphasize design reuse over
code reuse, though a framework will usually include concrete subclasses you can put to work immediately.

Reuse on thislevel leads to an inversion of control between the application and the software on whichit's
based. When you use atoolkit (or a conventional subroutine library for that matter), you write the main body
of the application and call the code you want to reuse. When you use a framework, you reuse the main body
and write the code it calls. You'll have to write operations with particular names and calling conventions, but
that reduces the design decisions you have to make.

Not only can you build applications faster as aresult, but the applications have similar structures. They are
easier to maintain, and they seem more consistent to their users. On the other hand, you lose some creative
freedom, since many design decisions have been made for you.

If applications are hard to design, and toolkits are harder, then frameworks are hardest of all. A framework
designer gambles that one architecture will work for all applicationsin the domain. Any substantive change
to the framework's design would reduce its benefits considerably, since the framework's main contribution to
an application is the architecture it defines. Therefore it's imperative to design the framework to be as
flexible and extensible as possible.

Furthermore, because applications are so dependent on the framework for their design, they are particularly
sensitive to changes in framework interfaces. As aframework evolves, applications have to evolve with it.
That makes loose coupling al the more important; otherwise even aminor change to the framework will
have major repercussions.

The design issues just discussed are most critical to framework design. A framework that addresses them
using design patternsis far more likely to achieve high levels of design and code reuse than one that doesn't.
Mature frameworks usually incorporate several design patterns. The patterns help make the framework's
architecture suitable to many different applications without redesign.

An added benefit comes when the framework is documented with the design patternsit uses [BJ94]. People

who know the patterns gain insight into the framework faster. Even people who don't know the patterns can
benefit from the structure they lend to the framework's documentation. Enhancing documentation is
important for all types of software, but it's particularly important for frameworks. Frameworks often pose a
steep learning curve that must be overcome before they're useful. While design patterns might not flatten the
learning curve entirely, they can make it less steep by making key elements of the framework's design more
explicit.

Because patterns and frameworks have some similarities, people often wonder how or even if they differ.
They are different in three major ways:

1. Design patterns are more abstract than frameworks. Frameworks can be embodied in code, but only
examples of patterns can be embodied in code. A strength of frameworks is that they can be written
down in programming languages and not only studied but executed and reused directly. In contrast,
the design patterns in this book have to be implemented each time they're used. Design patterns also
explain the intent, trade-offs, and consequences of a design.

2. Design patterns are smaller architectural elements than frameworks. A typical framework contains
several design patterns, but the reverseis never true.

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chaplfs.htm (21 of 24) [21/08/2002 19:04:17]

Introduction

3. Design patterns are less specialized than frameworks. Frameworks always have a particular
application domain. A graphical editor framework might be used in afactory simulation, but it won't
be mistaken for a simulation framework. In contrast, the design patterns in this catalog can be used in
nearly any kind of application. While more speciaized design patterns than ours are certainly
possible (say, design patterns for distributed systems or concurrent programming), even these
wouldn't dictate an application architecture like a framework would.

Frameworks are becoming increasingly common and important. They are the way that object-oriented
systems achieve the most reuse. Larger object-oriented applications will end up consisting of layers of
frameworks that cooperate with each other. Most of the design and code in the application will come from or
be influenced by the frameworks it uses.

¥ How to Select a Design Pattern

With more than 20 design patternsin the catalog to choose from, it might be hard to find the one that
addresses a particular design problem, especidly if the catalog is new and unfamiliar to you. Here are
several different approaches to finding the design pattern that's right for your problem:

1. Consider how design patterns solve design problems. Section 1.6 discusses how design patterns help

you find appropriate objects, determine object granularity, specify object interfaces, and several other
ways in which design patterns solve design problems. Referring to these discussions can help guide
your search for the right pattern.

2. Scan Intent sections. Section 1.4 (page 8) lists the Intent sections from all the patterns in the catal og.

Read through each pattern’s intent to find one or more that sound relevant to your problem. Y ou can
use the classification scheme presented in Table 1.1 (page 10) to narrow your search.

3. Study how patterns interrelate. Figure 1.1 (page 12) shows relationships between design patterns
graphically. Studying these relationships can help direct you to the right pattern or group of patterns.

4. Sudy patterns of like purpose. The catalog (page 79) has three chapters, one for creational patterns,
another for structural patterns, and athird for behavioral patterns. Each chapter starts off with
introductory comments on the patterns and concludes with a section that compares and contrasts
them. These sections give you insight into the similarities and differences between patterns of like
purpose.

5. Examine a cause of redesign. Look at the causes of redesign starting on page 24 to seeif your

problem involves one or more of them. Then look at the patterns that help you avoid the causes of
redesign.

6. Consider what should be variable in your design. This approach is the opposite of focusing on the
causes of redesign. Instead of considering what might force a change to a design, consider what you
want to be able to change without redesign. The focus here is on encapsulating the concept that
varies, atheme of many design patterns. Table 1.2 lists the design aspect(s) that design patterns let

you vary independently, thereby letting you change them without redesign.

Creational Abstract Factory (87) families of product objects
Builder (97) how a composite object gets created
Factory Method (107) subclass of object that isinstantiated
Protot 11 class of object that is instantiated

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chaplfs.htm (22 of 24) [21/08/2002 19:04:17]

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/patcafs.htm

Introduction

Singleton (127) the sole instance of aclass
Structural | Adapter (139) interface to an object
Bridge (151) implementation of an object
Composite (163) structure and composition of an object
Decorator (175) responsibilities of an object without subclassing
Facade (185) interface to a subsystem
Flyweight (195) storage costs of objects
Proxy (207) how an object is accessed; its location

Behavioral = Chain of Responsibility (223) ' object that can fulfill arequest

Command (233) when and how arequest is fulfilled

Interpreter (243) grammar and interpretation of alanguage

Iterator (257) how an aggregate's elements are accessed, traversed

Mediator (273) how and which objects interact with each other

Memento (283) what private information is stored outside an object, and
when

Observer (293) number of objects that depend on another object; how the
dependent objects stay up to date

State (305) states of an object

Strat: 315 an agorithm

Template Method (325) steps of an algorithm

Visitor (331) operations that can be applied to object(s) without changing
their class(es)

Table 1.2: Design aspects that design patterns et you vary

¥ How to Use a Design Pattern

Once you've picked a design pattern, how do you use it? Here's a step-by-step approach to applying adesign
pattern effectively:

1. Read the pattern once through for an overview. Pay particular attention to the Applicability and
Consequences sections to ensure the pattern is right for your problem.

2. Go back and study the Structure, Participants, and Collaborations sections. Make sure you
understand the classes and objects in the pattern and how they relate to one another.

3. Look at the Sample Code section to see a concrete exampl e of the pattern in code. Studying the code
helps you learn how to implement the pattern.

4. Choose names for pattern participants that are meaningful in the application context. The names for
participants in design patterns are usually too abstract to appear directly in an application.
Nevertheless, it's useful to incorporate the participant name into the name that appearsin the
application. That hel ps make the pattern more explicit in the implementation. For example, if you use

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chaplfs.htm (23 of 24) [21/08/2002 19:04:17]

Introduction

the Strategy pattern for atext compositing algorithm, then you might have classes
SimpleL ayoutStrategy or TeXLayoutStrategy.

5. Define the classes. Declare their interfaces, establish their inheritance relationships, and define the
instance variables that represent data and object references. Identify existing classesin your
application that the pattern will affect, and modify them accordingly.

6. Define application-specific names for operationsin the pattern. Here again, the names generally
depend on the application. Use the responsibilities and collaborations associated with each operation
asaguide. Also, be consistent in your naming conventions. For example, you might use the "Create-"
prefix consistently to denote a factory method.

7. Implement the operationsto carry out the responsibilities and collaborations in the pattern. The
Implementation section offers hints to guide you in the implementation. The examples in the Sample
Code section can help aswell.

These are just guidelines to get you started. Over time you'll develop your own way of working with design
patterns.

No discussion of how to use design patterns would be complete without a few words on how not to use
them. Design patterns should not be applied indiscriminately. Often they achieve flexibility and variability
by introducing additional levels of indirection, and that can complicate a design and/or cost you some
performance. A design pattern should only be applied when the flexibility it affordsis actually needed. The
Consequences sections are most helpful when evaluating a pattern's benefits and liabilities.

a

p Case Study
4 Guideto Readers

Abstract Factory = Adapter = Bridge = Builder = Chain of Responsibility » Command « Composite »
Decorator » Facade + Factory Method * Flyweight « Interpreter = lterator = Mediator + Memento +
Observer * Prototype * Proxy + Singleton + State + Strategy *+ Template Method + Visitor

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chaplfs.htm (24 of 24) [21/08/2002 19:04:17]

A Case Study

Case Study | Pattern Catalog | Conclusion
O A Case Study

SEARCH
| Contents |'I3ui|:|c to Hnﬂdu5| o [| Notation | Foundaticn | Bibliography | Index | Pattern Map |

Design Prablems

Document

Structure
This chapter presents a case study in the design of a"What-Y ou-See-I1s-What-Y ou-Get" (or "WY SIWYG")

document editor called Lexi.l We'll see how design patterns capture solutions to design problemsin Lexi and

SLE NI applications like it. By the end of this chapter you will have gained experience with eight patterns, learning them by
User Interface example

Supporting
Lmk_aumﬂl,:h;; Figure 2.1 depicts Lexi's user interface. A WY SIWY G representation of the document occupies the large

L rectangular arealin the center. The document can mix text and graphics freely in a variety of formatting styles.
PSS Surrounding the document are the usual pull-down menus and scroll bars, plus a collection of page icons for
UL BT jumping to a particular page in the document.

Formatting

Systems
User Operations ERET ——]|
SPB"II'IQ File Edit Ngﬂ_ 5 Imggnt-ul
Checking and Ej;‘...’.:alq y 2
Hyphenation mmﬁg *

Summary eeaice

{Jnu b 4 & guatastioas v Soering

Bt Tl sl of T e, Tre S . (hand ond R oot e celn Chaang
opcater{which o ratikerea) rophr idhodner i thut 1 e 1E-bFE LS - rmapded " E T St
T,

Tra ool s By y TeetPher inumle g 1o Mg oo el grophios
agheal Ao redd, oot Bot leetd of DO g cm pa A i 3 & #x gt iy
e o e kg R i s s i
I L AT ST S A UM priciel [t Tty 1 2o ey
s i U luar packli b wly Sos g e gl sy i il deecion 4 -]
abjiza oot I wioe b dovegrd mfan W0l 49 preply by dueewy gopiesl eprnacdeeas of e
darwr call. Thn pacsgracn dcen cartbovs b s e e Sl ek Fipor 7, s Hhe e
3k Bot ik wht okjich tominar-tul M B e gt b e voE +
i e imedhit O ik g, e oyl & St 5 glyph ot dplays b —
of B Dox duw cprioa). Tadeed, Ba fyph-tomed o — 1 Biew, sad Billat oy
plarmiyten of TrViw i oo dirgle e e N
o e bt v e) et el ik i, T Coeipalan pumsesr 0 Badi 4
whet o b i e rad e o s b

i b el it li;:].l:‘__';_!: -__3_:5-::141.1:;. 1= EFy |
*.7 Fiubiph fenls Pt =ty T 1
Eard e W ALy TeriV e weinh phpie, w o iy Li:;‘: .:‘:::“_

Al it e ad Aol ige SO e, o Eevei i edinfe, guitoiEiledy, T4
ol w weplrss, Far ooooply, Fioe ?rn'lﬂ E]

3 sk g of 3 wkn of Tt W Bar Siglsm LH

BT -iewied ey et ke i Fursm w3 Ui —

v kahon the A Seeo Tan W wodl Lguis ame ibaruetec{, wld

3 corsghis wraniin Hisd wesedy i o S el ocda 11

Figu Sahon ha g f ¥

Cunckr piypn iy m apioen] mord cratrcim
T LR e R W i T Aararing
Poy RECT] st Lol iy Py Cliwiles WL s
s it AT = el il M Mo TIPS MaRThd Tami Wiyl Rpareon i

£ 53
FiE MRBRERTEERR

E=1HE

Figure 2.1: Lexi's user interface

v Design Problems

We will examine seven problemsin Lexi's design:

1. Document structure. The choice of internal representation for the document affects nearly every aspect of
Lexi's design. All editing, formatting, displaying, and textual analysis will require traversing the
representation. The way we organize this information will impact the design of the rest of the application.

2. Formatting. How does Lexi actually arrange text and graphics into lines and columns? What objects are
responsible for carrying out different formatting policies? How do these policiesinteract with the document's
internal representation?

3. Embellishing the user interface. Lexi's user interface includes scroll bars, borders, and drop shadows that
embellish the WY SIWY G document interface. Such embellishments are likely to change as Lexi's user
interface evolves. Hence it's important to be able to add and remove embellishments easily without affecting

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap2fs.htm (1 of 32) [21/08/2002 19:04:54]

javascript:loadApplet()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap2.htm#sec2-9
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap2.htm#sec2-8
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap2.htm#sec2-7
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap2.htm#sec2-6
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap2.htm#sec2-5
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap2.htm#sec2-4
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap2.htm#sec2-3
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap2.htm#sec2-2
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap2.htm#sec2-1
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/helpfs.htm
javascript:build()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/patcafs.htm

A Case Study

the rest of the application.

4. Supporting multiple look-and-feel standards. Lexi should adapt easily to different look-and-feel standards
such as Motif and Presentation Manager (PM) without major modification.

5. Supporting multiple window systems. Different look-and-feel standards are usually implemented on different
window systems. Lexi's design should be as independent of the window system as possible.

6. User operations. Users control Lexi through various user interfaces, including buttons and pull-down menus.
The functionality behind these interfaces is scattered throughout the objects in the application. The challenge
hereis to provide a uniform mechanism both for accessing this scattered functionality and for undoing its
effects.

7. Spelling checking and hyphenation. How does Lexi support analytical operations such as checking for
misspelled words and determining hyphenation points? How can we minimize the number of classes we
have to modify to add a new analytical operation?

We discuss these design problems in the sections that follow. Each problem has an associated set of goals plus
constraints on how we achieve those goals. We explain the goals and constraints in detail before proposing a
specific solution. The problem and its solution will illustrate one or more design patterns. The discussion for each
problem will culminate in a brief introduction to the relevant patterns.

* Document Structure

A document is ultimately just an arrangement of basic graphical elements such as characters, lines, polygons, and
other shapes. These elements capture the total information content of the document. Y et an author often views these
elements not in graphical terms but in terms of the document's physical structure—lines, columns, figures, tables,
and other substructures.2 In turn, these substructures have substructures of their own, and so on.

Lexi's user interface should let users manipulate these substructures directly. For example, a user should be able to
treat a diagram as a unit rather than as a collection of individual graphical primitives. The user should be able to
refer to atable asawhole, not as an unstructured mass of text and graphics. That helps make the interface smple
and intuitive. To give Lexi'simplementation similar qualities, we'll choose an internal representation that matches
the document's physical structure.

In particular, the internal representation should support the following:

. Maintaining the document's physical structure, that is, the arrangement of text and graphicsinto lines,
columns, tables, etc.

. Generating and presenting the document visually.

. Mapping positions on the display to elementsin the internal representation. Thislets Lexi determine what
the user is referring to when he points to something in the visual representation.

In addition to these goals are some constraints. First, we should treat text and graphics uniformly. The application's
interface lets the user embed text within graphics freely and vice versa. We should avoid treating graphics as a
special case of text or text as a special case of graphics; otherwise we'll end up with redundant formatting and

mani pulation mechanisms. One set of mechanisms should suffice for both text and graphics.

Second, our implementation shouldn't have to distinguish between single elements and groups of lementsin the
internal representation. Lexi should be able to treat smple and complex elements uniformly, thereby allowing
arbitrarily complex documents. The tenth element in line five of column two, for instance, could be asingle
character or an intricate diagram with many subelements. Aslong as we know this element can draw itself and
specify its dimensions, its complexity has no bearing on how and where it should appear on the page.

Opposing the second constraint, however, is the need to analyze the text for such things as spelling errors and
potential hyphenation points. Often we don't care whether the element of alineis asimple or complex object. But
sometimes an analysis depends on the objects being analyzed. It makes little sense, for example, to check the

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap2fs.htm (2 of 32) [21/08/2002 19:04:54]

A Case Study

spelling of apolygon or to hyphenate it. The internal representation’s design should take this and other potentially
conflicting constraints into account.

Recursive Composition

A common way to represent hierarchically structured information is through a technique called recursive
composition, which entails building increasingly complex elements out of simpler ones. Recursive composition
gives us away to compose a document out of simple graphical elements. As afirst step, we can tile a set of
characters and graphics from left to right to form aline in the document. Then multiple lines can be arranged to
form a column, multiple columns can form a page, and so on (see Figure 2.2).

characters space image composite {row)

i N
¥ g

G| =

composite (column)

Figure 2.2: Recursive composition of text and graphics

We can represent this physical structure by devoting an object to each important el ement. That includes not just the
visible elements like the characters and graphics but the invisible, structural elements as well—the lines and the
column. The result is the object structure shown in Figure 2.3.

Figure 2.3: Object structure for recursive composition of text and graphics

By using an object for each character and graphical element in the document, we promote flexibility at the finest

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap2fs.htm (3 of 32) [21/08/2002 19:04:54]

A Case Study

levels of Lexi's design. We can treat text and graphics uniformly with respect to how they are drawn, formatted, and
embedded within each other. We can extend Lexi to support new character sets without disturbing other
functionality. Lexi's object structure mimics the document's physical structure.

This approach has two important implications. Thefirst is obvious: The objects need corresponding classes. The
second implication, which may be less obvious, is that these classes must have compatible interfaces, because we
want to treat the objects uniformly. The way to make interfaces compatible in alanguage like C++ isto relate the
classes through inheritance.

Glyphs

Well define a Glyph abstract class for all objects that can appear in a document structure.3 Its subclasses define
both primitive graphical elements (like characters and images) and structural elements (like rows and columns).
Figure 2.4 depicts a representative part of the Glyph class hierarchy, and Table 2.1 presents the basic glyph

interface in more detail using C++ notation.4

Glyph -

Draw{Window)
Intarsects{Point)
Inzart{Giyph, int)

A

for all & in childran
if c—=Intersects(p) return true

childran
Character Rectangle Row

Draw(Window w) &7~ "1 Draw(...) Draw(Window w) Dh-—=-—-—-—H---------
Intersects(Point p) & ! Intersects(...) Intersects(Point p) ~ ©-—-—-~1 - !
' ! Insert{Glyph g, int i | !
char o i : yph g, Inth T ! i

| |
. polygon .
! | O insert g inte | :
return true if point p \ ranwi...) children at position i ! i
intersects this character ! Imersects]...) ! :
L I
i :
|
|
1

w0 rawEharacler{cH

forall ¢ in children
ensure ¢ is positioned
correctly;
c—=Drawiw)

Figure 2.4: Partial Glyph class hierarchy

appearance | virtual voi d Draw(W ndow*)
virtual void Bounds(Rect &)

hit detection |vi rtual bool |ntersects(const Point&)

structure virtual void Insert(dyph*, int)
virtual void Remove(d yph*)
virtual dyph* Child(int)
virtual dyph* Parent()

Table2.1: Basic glyph interface

Glyphs have three basic responsihilities. They know (1) how to draw themselves, (2) what space they occupy, and
(3) their children and parent.

Glyph subclasses redefine the Dr aw operation to render themsel ves onto a window. They are passed areference to

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap2fs.htm (4 of 32) [21/08/2002 19:04:54]

A Case Study

aW ndow object in the call to Dr aw. The Window class defines graphics operations for rendering text and basic
shapesin awindow on the screen. A Rectangle subclass of Glyph might redefine Dr aw as follows:

voi d Rectangl e::Draw (W ndow w) {
w >Dr awRect (_x0, _yO0, _x1, _y1);
}

where _x0, _y0, x1,and_y1 are datamembersof Rect angl e that define two opposing corners of the
rectangle. Dr awRect isthe Window operation that makes the rectangle appear on the screen.

A parent glyph often needs to know how much space a child glyph occupies, for example, to arrange it and other
glyphsin aline so that none overlaps (as shown in Figure 2.3). The Bounds operation returns the rectangular area
that the glyph occupies. It returns the opposite corners of the smallest rectangle that contains the glyph. Glyph
subclasses redefine this operation to return the rectangular areain which they draw.

Thel nt er sect s operation returns whether a specified point intersects the glyph. Whenever the user clicks
somewhere in the document, Lexi calls this operation to determine which glyph or glyph structure is under the
mouse. The Rectangle class redefines this operation to compute the intersection of the rectangle and the given point.

Because glyphs can have children, we need a common interface to add, remove, and access those children. For
example, a Row's children are the glyphsit arrangesinto arow. Thel nser t operation inserts a glyph at a position
specified by an integer index.2 The Renpve operation removes a specified glyph if it isindeed a child.

The Chi | d operation returns the child (if any) at the given index. Glyphs like Row that can have children should
use Chi | d internally instead of accessing the child data structure directly. That way you won't have to modify
operations like Dr aw that iterate through the children when you change the data structure from, say, an array to a
linked list. Similarly, Par ent provides a standard interface to the glyph's parent, if any. Glyphsin Lexi storea
reference to their parent, and their Par ent operation simply returns this reference.

Composite Pattern

Recursive composition is good for more than just documents. We can use it to represent any potentially complex,
hierarchical structure. The Composite (163) pattern captures the essence of recursive composition in object-oriented

terms. Now would be a good time to turn to that pattern and studly it, referring back to this scenario as needed.

* Formatting

We've settled on away to represent the document's physical structure. Next, we need to figure out how to construct
aparticular physical structure, one that correspondsto a properly formatted document. Representation and
formatting are distinct: The ability to capture the document's physical structure doesn't tell us how to arrive at a
particular structure. This responsibility rests mostly on Lexi. It must break text into lines, lines into columns, and so
on, taking into account the user's higher-level desires. For example, the user might want to vary margin widths,
indentation, and tabulation; single or double space; and probably many other formatting constraints. Lexi's
formatting algorithm must take all of these into account.

By the way, welll restrict "formatting” to mean breaking a collection of glyphsinto lines. In fact, we'll use the terms
"formatting” and "linebreaking" interchangeably. The techniques we'll discuss apply equally well to breaking lines
into columns and to breaking columns into pages.

Encapsulating the Formatting Algorithm

The formatting process, with al its constraints and details, isn't easy to automate. There are many approaches to the
problem, and people have come up with avariety of formatting algorithms with different strengths and weaknesses.
Because Lexi isaWY SIWY G editor, an important trade-off to consider is the balance between formatting quality
and formatting speed. We want generally good response from the editor without sacrificing how good the document
looks. This trade-off is subject to many factors, not all of which can be ascertained at compile-time. For example,
the user might tolerate slightly slower response in exchange for better formatting. That trade-off might make an
entirely different formatting algorithm more appropriate than the current one. Another, more implementation-driven

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap2fs.htm (5 of 32) [21/08/2002 19:04:54]

A Case Study

trade-off balances formatting speed and storage requirements: It may be possible to decrease formatting time by
caching more information.

Because formatting algorithms tend to be complex, it's also desirable to keep them well-contained or—better
yet—completely independent of the document structure. Ideally we could add a new kind of Glyph subclass without
regard to the formatting algorithm. Conversely, adding a new formatting algorithm shouldn't require modifying
existing glyphs.

These characteristics suggest we should design Lexi so that it's easy to change the formatting algorithm at least at
compile-time, if not at run-time as well. We can isolate the algorithm and make it easily replaceable at the same
time by encapsulating it in an object. More specifically, we'll define a separate class hierarchy for objects that
encapsulate formatting algorithms. The root of the hierarchy will define an interface that supports a wide range of
formatting algorithms, and each subclass will implement the interface to carry out a particular algorithm. Then we
can introduce a Glyph subclass that will structure its children automatically using a given algorithm object.

Compositor and Composition

We'll define a Compositor class for objects that can encapsulate a formatting algorithm. The interface (Table 2.2)

lets the compositor know what glyphs to format and when to do the formatting. The glyphs it formats are the
children of a special Glyph subclass called Composition. A composition gets an instance of a Compositor subclass
(specialized for a particular linebreaking algorithm) when it is created, and it tells the compositor to Conpose its
glyphs when necessary, for example, when the user changes a document. Figure 2.5 depicts the relationships
between the Composition and Compositor classes.

what to format | voi d Set Conposi ti on(Conposi ti on*)

whentoformat |vi rtual voi d Conpose()

Table 2.2 Basic compositor interface

Glyph
Ingert{Glyoh, int}

Z# Compositor

childran c Hion t:;_:r:rr'rm:u:nin:}r -
Composal)
S i
Irzert{Glyph g, int i) : composilion SeftComposition|)
:
|
Glyph::Insertig, i) | | |
compositor. Compose() ArrayCompaositor TeXCompositor SimpleCompositor
Compose() Composel) Composel)

Figure 2.5: Composition and Compositor class relationships

An unformatted Composition object contains only the visible glyphs that make up the document's basic content. It
doesn't contain glyphs that determine the document's physical structure, such as Row and Column. The composition
isinthis state just after it's created and initialized with the glyphs it should format. When the composition needs
formatting, it callsits compositor's Conpose operation. The compositor in turn iterates through the composition's
children and inserts new Row and Column glyphs according to its linebreaking algorithm.” Figure 2.6 shows the
resulting object structure. Glyphs that the compositor created and inserted into the object structure appear with gray
backgrounds in the figure.

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap2fs.htm (6 of 32) [21/08/2002 19:04:54]

A Case Study

compositor- composition
generated L

glyphs

compositor

Figure 2.6: Object structure reflecting compositor-directed linebreaking

Each Compositor subclass can implement a different linebreaking algorithm. For example, a SimpleCompositor
might do a quick pass without regard for such esoterica as the document's "color.” Good color means having an
even distribution of text and whitespace. A TeXCompositor would implement the full TeX algorithm [Knu84],

which takes things like color into account in exchange for longer formatting times.

The Compositor-Composition class split ensures a strong separation between code that supports the document's
physical structure and the code for different formatting algorithms. We can add new Compositor subclasses without
touching the glyph classes, and vice versa. In fact, we can change the linebreaking algorithm at run-time by adding
asingle Set Conposi t or operation to Composition's basic glyph interface.

Strategy Pattern

Encapsulating an algorithm in an object isthe intent of the Strateqy (315) pattern. The key participantsin the
pattern are Strategy objects (which encapsul ate different algorithms) and the context in which they operate.
Compositors are strategies; they encapsulate different formatting agorithms. A composition is the context for a
compositor strategy.

The key to applying the Strategy pattern is designing interfaces for the strategy and its context that are general
enough to support arange of algorithms. Y ou shouldn't have to change the strategy or context interface to support a
new algorithm. In our example, the basic Glyph interface's support for child access, insertion, and removal is
general enough to let Compositor subclasses change the document's physical structure, regardless of the algorithm
they use to do it. Likewise, the Compositor interface gives compositions whatever they need to initiate formatting.

v Embellishing the User Interface

We consider two embellishments in Lexi's user interface. The first adds a border around the text editing areato
demarcate the page of text. The second adds scroll barsthat let the user view different parts of the page. To make it
easy to add and remove these embellishments (especialy at run-time), we shouldn't use inheritance to add them to
the user interface. We achieve the most flexibility if other user interface objects don't even know the
embellishments are there. That will let us add and remove the embel lishments without changing other classes.

Transparent Enclosure

From a programming point of view, embellishing the user interface involves extending existing code. Using
inheritance to do such extension precludes rearranging embel lishments at run-time, but an equally serious problem
isthe explosion of classes that can result from an inheritance-based approach.

We could add a border to Composition by subclassing it to yield a BorderedComposition class. Or we could add a

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap2fs.htm (7 of 32) [21/08/2002 19:04:54]

A Case Study

scrolling interface in the same way to yield a ScrollableComposition. If we want both scroll bars and a border, we
might produce a BorderedScrollableComposition, and so forth. In the extreme, we end up with a class for every
possible combination of embellishments, a solution that quickly becomes unworkable as the variety of
embellishments grows.

Object composition offers a potentially more workable and flexible extension mechanism. But what objects do we
compose? Since we know we're embellishing an existing glyph, we could make the embellishment itself an object
(say, an instance of class Border). That gives us two candidates for composition, the glyph and the border. The next
step isto decide who composes whom. We could have the border contain the glyph, which makes sense given that
the border will surround the glyph on the screen. Or we could do the opposite—put the border into the glyph—but
then we must make modifications to the corresponding Glyph subclass to make it aware of the border. Our first
choice, composing the glyph in the border, keeps the border-drawing code entirely in the Border class, leaving other
classes alone.

What does the Border class ook like? The fact that borders have an appearance suggests they should actually be
glyphs; that is, Border should be a subclass of Glyph. But there's a more compelling reason for doing this: Clients
shouldn't care whether glyphs have borders or not. They should treat glyphs uniformly. When clientstell aplain,
unbordered glyph to draw itself, it should do so without embellishment. If that glyph is composed in a border,
clients shouldn't have to treat the border containing the glyph any differently; they just tell it to draw itself asthey
told the plain glyph before. Thisimplies that the Border interface matches the Glyph interface. We subclass Border
from Glyph to guarantee this relationship.

All thisleads us to the concept of transparent enclosure, which combines the notions of (1) single-child (or single-
component) composition and (2) compatible interfaces. Clients generally can't tell whether they're dealing with the
component or its enclosure (i.e., the child's parent), especially if the enclosure simply delegates al its operations to
its component. But the enclosure can also augment the component's behavior by doing work of its own before
and/or after delegating an operation. The enclosure can aso effectively add state to the component. We'll see how
next.

Monoglyph

We can apply the concept of transparent enclosure to all glyphs that embellish other glyphs. To make this concept
concrete, we'll define a subclass of Glyph called M onoGlyph to serve as an abstract class for "embellishment
glyphs,” like Border (see Figure 2.7). MonoGlyph stores areference to a component and forwards al requeststo it.

That makes MonoGlyph totally transparent to clients by default. For example, MonoGlyph implements the Dr aw
operation like this:

voi d Monod yph:: Draw (W ndow* w) {
_conponent - >Dr awm(W) ;
}

———™ Giyph

Draw{Window)}

:

— N MonoGlyph
CoOMmponant

Draw(Window)

A
| |

Border Scroller

Drraw{Window) Drraw{Window)
DrawBorder{Window)

Figure 2.7: MonoGlyph class relationships

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap2fs.htm (8 of 32) [21/08/2002 19:04:54]

A Case Study

MonoGlyph subclasses reimplement at least one of these forwarding operations. Bor der : : Dr aw, for instance,
first invokes the parent class operation Monod yph: : Dr awon the component to let the component do its
part—that is, draw everything but the border. Then Bor der : : Dr awdraws the border by calling a private
operation called Dr awBor der , the details of which we'll omit:

voi d Border:: Draw (W ndow w) {
Monod yph: : Drawm w) ;
Dr awBor der (W) ;

}

Notice how Bor der : : Dr aw effectively extends the parent class operation to draw the border. Thisisin contrast
to merely replacing the parent class operation, which would omit the call to Monod yph: : Dr aw.

Another MonoGlyph subclass appearsin Figure 2.7. Scroller isaMonoGlyph that draws its component in different
locations based on the positions of two scroll bars, which it adds as embellishments. When Scroller draws its
component, it tells the graphics system to clip to its bounds. Clipping parts of the component that are scrolled out of
view keeps them from appearing on the screen.

Now we have all the pieces we need to add a border and a scrolling interface to Lexi's text editing area. We
compose the existing Composition instance in a Scroller instance to add the scrolling interface, and we compose
that in a Border instance. The resulting object structure appears in Figure 2.8.

border

Figure 2.8: Embellished object structure

Note that we can reverse the order of composition, putting the bordered composition into the Scroller instance. In
that case the border would be scrolled along with the text, which may or may not be desirable. The point is,
transparent enclosure makes it easy to experiment with different alternatives, and it keeps clients free of
embellishment code.

Note also how the border composes one glyph, not two or more. This is unlike compositions we've defined so far, in
which parent objects were allowed to have arbitrarily many children. Here, putting a border around something
implies that "something” is singular. We could assign a meaning to embellishing more than one object at atime, but
then we'd have to mix many kinds of composition in with the notion of embellishment: row embellishment, column
embellishment, and so forth. That won't help us, since we already have classes to do those kinds of compositions.
So it's better to use existing classes for composition and add new classes to embellish the result. Keeping
embellishment independent of other kinds of composition both simplifies the embellishment classes and reduces
their number. It also keeps us from replicating existing composition functionality.

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap2fs.htm (9 of 32) [21/08/2002 19:04:54]

A Case Study

Decorator Pattern

The Decorator (175) pattern captures class and object relationships that support embellishment by transparent
enclosure. The term "embellishment" actually has broader meaning than what we've considered here. In the
Decorator pattern, embellishment refers to anything that adds responsibilities to an object. We can think for
example of embellishing an abstract syntax tree with semantic actions, afinite state automaton with new transitions,
or anetwork of persistent objects with attribute tags. Decorator generalizes the approach we've used in Lexi to
make it more widely applicable.

v Supporting Multiple Look-and-Feel Standards

Achieving portability across hardware and software platformsis amajor problem in system design. Retargeting
Lexi to anew platform shouldn't require a major overhaul, or it wouldn't be worth retargeting. We should make
porting as easy as possible.

One obstacle to portability isthe diversity of look-and-feel standards, which are intended to enforce uniformity
between applications. These standards define guidelines for how applications appear and react to the user. While
existing standards aren't that different from each other, people certainly won't confuse one for the other—Motif
applications don't look and feel exactly like their counterparts on other platforms, and vice versa. An application
that runs on more than one platform must conform to the user interface style guide on each platform.

Our design goals are to make Lexi conform to multiple existing look-and-feel standards and to make it easy to add
support for new standards as they (invariably) emerge. We also want our design to support the ultimatein
flexibility: changing Lexi's look and fed at run-time.

Abstracting Object Creation

Everything we see and interact with in Lexi's user interface is a glyph composed in other, invisible glyphs like Row
and Column. The invisible glyphs compose visible ones like Button and Character and lay them out properly. Style
guides have much to say about the look and feel of so-called "widgets," another term for visible glyphs like buttons,
scroll bars, and menus that act as controlling elementsin a user interface. Widgets might use ssmpler glyphs such as
characters, circles, rectangles, and polygons to present data.

Welll assume we have two sets of widget glyph classes with which to implement multiple look-and-feel standards:

1. A set of abstract Glyph subclasses for each category of widget glyph. For example, an abstract class
ScrollBar will augment the basic glyph interface to add general scrolling operations; Button is an abstract
class that adds button-oriented operations; and so on.

2. A set of concrete subclasses for each abstract subclass that implement different look-and-feel standards. For
example, ScrollBar might have MotifScrollBar and PM ScrollBar subclasses that implement Motif and
Presentation Manager-style scroll bars, respectively.

Lexi must distinguish between widget glyphs for different look-and-fedl styles. For example, when Lexi needs to
put abutton in its interface, it must instantiate a Glyph subclass for the right style of button (MotifButton,
PMButton, MacButton, etc.).

It's clear that Lexi's implementation can't do this directly, say, using a constructor call in C++. That would hard-
code the button of a particular style, making it impossible to select the style at run-time. We'd also have to track
down and change every such constructor call to port Lexi to another platform. And buttons are only one of avariety
of widgetsin Lexi's user interface. Littering our code with constructor calls to specific look-and-feel classesyieldsa
maintenance nightmare—miss just one, and you could end up with a Motif menu in the middle of your Mac
application.

Lexi needs away to determine the look-and-feel standard that's being targeted in order to create the appropriate
widgets. Not only must we avoid making explicit constructor calls, we must also be able to replace an entire widget
set easily. We can achieve both by abstracting the process of object creation. An example will illustrate what we

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap2fs.htm (10 of 32) [21/08/2002 19:04:54]

A Case Study

mean.

Factories and Product Classes
Normally we might create an instance of a Matif scroll bar glyph with the following C++ code:
Scrol | Bar* sb = new MtifScroll Bar;

Thisisthekind of code to avoid if you want to minimize Lexi's look-and-feel dependencies. But suppose we
initialize sb asfollows:

Scrol | Bar* sb = gui Factory->CreateScrol | Bar();

where gui Fact or y isaninstance of aMotifFactory class. Cr eat eScr ol | Bar returns a new instance of the
proper ScrollBar subclass for the look and feel desired, Motif in this case. Asfar as clients are concerned, the effect
isthe same as calling the Motif ScrollBar constructor directly. But there's a crucial difference: There's no longer
anything in the code that mentions Motif by name. The gui Fact or y object abstracts the process of creating not
just Motif scroll bars but scroll bars for any look-and-feel standard. And gui Fact or y isn't limited to producing
scroll bars. It can manufacture a full range of widget glyphs, including scroll bars, buttons, entry fields, menus, and
so forth.

All thisis possible because MotifFactory is a subclass of GUI Factory, an abstract class that defines a general
interface for creating widget glyphs. It includes operationslike Cr eat eScr ol | Bar and Cr eat eBut t on for
instantiating different kinds of widget glyphs. Subclasses of GUIFactory implement these operations to return
glyphs such as MotifScrollBar and PMButton that implement a particular ook and feel. Figure 2.9 shows the

resulting class hierarchy for gui Fact or y objects.

GliIFactory

CreateScroliBar)
CreateBution()
CreateManuy)

A
| | |

MotifFactory PMFactory MacFactory

CreateScrolBar) o-F------ | CreateScroliBar]) C-r------ [CreateScrolBar() S-r------ [
CreateButton() k- CreateButton() o-F--- CreateButton(} o-F---
CreateManul) o-F Createbenu() o-F CraateMenul) o-r

retum new Motlﬂdenﬁ raturm new PR enu H rafum new Mach'lanuﬂ
refurn new I'u'lnlifButth retuTn new PMEuﬁnnﬂ return new MacBuﬂnH
raturn new Mmfﬁcmhﬂaﬁ return naw FMSGMIIBEH retuem new MaﬂScruIIBaH

Figure 2.9: GUIFactory class hierarchy

We say that factories create product objects. Moreover, the products that a factory produces are related to one
another; in this case, the products are all widgets for the same look and feel. Figure 2.10 shows some of the product

classes needed to make factories work for widget glyphs.

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap2fs.htm (11 of 32) [21/08/2002 19:04:54]

A Case Study

Glyph
ScroflBar Button Menu
ScrolTofint) Fress(} Papugy)
MotifSerollBar MacSerollBar MotifButton MacButton MotifMenu MacMenu
SeroliTolinl) SorollTofint Press!) Press() Papuply Fopup)
PMScrollBar PMButton FMMenu
SeraliTolint) Press() Popupt}

Figure 2.10: Abstract product classes and concrete subclasses

The last question we have to answer is, Where does the GUI Fact or y instance come from? The answer is,
Anywhere that's convenient. The variable gui Fact or y could be aglobal, a static member of awell-known class,
or even alocal variableif the entire user interfaceis created within one class or function. There's even a design
pattern, Singleton (127), for managing well-known, one-of-a-kind objects like this. The important thing, though, is
toinitializegui Fact ory at apoint in the program before it's ever used to create widgets but after it's clear which
look and feel isdesired.

If thelook and feel is known at compile-time, then gui Fact or y can beinitialized with asimple assignment of a
new factory instance at the beginning of the program:

QU Fact ory* gui Factory = new Mtif Factory;

If the user can specify the look and feel with a string name at startup time, then the code to create the factory might
be

QU Fact ory* gui Factory;
const char* styleNane = getenv("LOOK_AND FEEL");
/1 user or environnent supplies this at startup

if (strcnp(styleNane, "Mtif") == 0) {
gui Factory = new MotifFactory;

} else if (strcnp(styleNanme, "Presentation_Mnager") == 0) {
gui Factory = new PMFactory;

} else {
gui Factory = new Def aul t QU Fact ory;
}

There are more sophisticated ways to select the factory at run-time. For example, you could maintain aregistry that
maps strings to factory objects. That lets you register instances of new factory subclasses without modifying
existing code, as the preceding approach requires. And you don't have to link all platform-specific factories into the
application. That's important, because it might not be possible to link a MotifFactory on a platform that doesn't
support Motif.

But the point is that once we've configured the application with the right factory object, itslook and feel is set from
then on. If we change our minds, we can reinitialize gui Fact or y with afactory for adifferent look and feel and
then reconstruct the interface. Regardless of how and when we decide to initialize gui Fact or y, we know that
once we do, the application can create the appropriate ook and feel without modification.

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap2fs.htm (12 of 32) [21/08/2002 19:04:54]

A Case Study

Abstract Factory Pattern

Factories and products are the key participants in the Abstract Factory (87) pattern. This pattern captures how to
create families of related product objects without instantiating classes directly. It's most appropriate when the
number and general kinds of product objects stay constant, and there are differences in specific product families.
We choose between families by instantiating a particular concrete factory and using it consistently to create
products thereafter. We can also swap entire families of products by replacing the concrete factory with an instance
of adifferent one. The Abstract Factory pattern's emphasis on families of products distinguishesit from other
creational patterns, which involve only one kind of product object.

v Supporting Multiple Window Systems

Look and feel isjust one of many portability issues. Another is the windowing environment in which Lexi runs. A
platform's window system creates the illusion of multiple overlapping windows on a bitmapped display. It manages
screen space for windows and routes input to them from the keyboard and mouse. Several important and largely
incompatible window systems exist today (e.g., Macintosh, Presentation Manager, Windows, X). We'd like Lexi to
run on as many of them as possible for exactly the same reasons we support multiple look-and-feel standards.

Can We Use an Abstract Factory?

At first glance this may look like another opportunity to apply the Abstract Factory pattern. But the constraints for
window system portability differ significantly from those for look-and-feel independence.

In applying the Abstract Factory pattern, we assumed we would define the concrete widget glyph classes for each
look-and-feel standard. That meant we could derive each concrete product for a particular standard (e.g.,
MotifScrollBar and MacScrolIBar) from an abstract product class (e.g., ScrollBar). But suppose we aready have
several class hierarchies from different vendors, one for each look-and-feel standard. Of course, it's highly unlikely
these hierarchies are compatible in any way. Hence we won't have a common abstract product class for each kind of
widget (ScrollBar, Button, Menu, etc.)—and the Abstract Factory pattern won't work without those crucial classes.
We have to make the different widget hierarchies adhere to acommon set of abstract product interfaces. Only then
could we declarethe Cr eat e. . . operations properly in our abstract factory's interface.

We solved this problem for widgets by developing our own abstract and concrete product classes. Now we're faced
with asimilar problem when we try to make Lexi work on existing window systems; namely, different window
systems have incompatible programming interfaces. Things are a bit tougher this time, though, because we can't
afford to implement our own nonstandard window system.

But there's a saving grace. Like look-and-feel standards, window system interfaces aren't radically different from
one another, because all window systems do generally the same thing. We need a uniform set of windowing
abstractions that lets us take different window system implementations and slide any one of them under a common
interface.

Encapsulating Implementation Dependencies
In Section 2.2 we introduced a Window class for displaying a glyph or glyph structure on the display. We didn't
specify the window system that this object worked with, because the truth is that it doesn't come from any particular
window system. The Window class encapsulates the things windows tend to do across window systems:

. They provide operations for drawing basic geometric shapes.

. They can iconify and de-iconify themselves.

. They can resize themselves.

. They can (re)draw their contents on demand, for example, when they are de-iconified or when an overlapped
and obscured portion of their screen space is exposed.

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap2fs.htm (13 of 32) [21/08/2002 19:04:54]

A Case Study

The Window class must span the functionality of windows from different window systems. Let's consider two
extreme philosophies:

1. Intersection of functionality. The Window class interface provides only functionality that's common to all
window systems. The problem with this approach is that our Window interface winds up being only as
powerful asthe least capable window system. We can't take advantage of more advanced features even if
most (but not all) window systems support them.

2. Union of functionality. Create an interface that incorporates the capabilities of all existing systems. The
trouble hereis that the resulting interface may well be huge and incoherent. Besides, we'll have to change it
(and Lexi, which depends on it) anytime a vendor revises its window system interface.

Neither extremeis aviable solution, so our design will fall somewhere between the two. The Window class will
provide a convenient interface that supports the most popular windowing features. Because Lexi will deal with this
class directly, the Window class must a so support the things Lexi knows about, namely, glyphs. That means
Window's interface must include a basic set of graphics operations that lets glyphs draw themselves in the window.
Table 2.3 gives a sampling of the operations in the Window class interface.

window management | vi rtual voi d Redraw)
virtual void Raise()
virtual void Lower()
virtual void Iconify()
virtual void Deiconify()

graphics virtual void DrawlLine(...)
virtual void DrawRect(...)
virtual void DrawPol ygon(...)
virtual void Drawlext(...)

Table 2.3: Window class interface

Window is an abstract class. Concrete subclasses of Window support the different kinds of windows that users deal
with. For example, application windows, icons, and warning dialogs are all windows, but they have somewhat
different behaviors. So we can define subclasses like ApplicationWindow, IconWindow, and DialogWindow to
capture these differences. The resulting class hierarchy gives applications like Lexi a uniform and intuitive
windowing abstraction, one that doesn't depend on any particular vendor's window system:

Glyph P | indow

DrawWindow) Redrawi) O-q-=-----1 glyph—=Draw(this)
tconifi’}
Lower}

Drawlinef}

A
| | |

ApplicationWindow lconWindow DialogWindow

Iconify() Lower()

owWner

ownar-=Lower()

Now that we've defined awindow interface for Lexi to work with, where does the real platform-specific window

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap2fs.htm (14 of 32) [21/08/2002 19:04:54]

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap2.htm#editor_window_base_class_interface

A Case Study

come in? If we're not implementing our own window system, then at some point our window abstraction must be
implemented in terms of what the target window system provides. So where does that implementation live?

One approach is to implement multiple versions of the Window class and its subclasses, one version for each
windowing platform. We'd have to choose the version to use when we build Lexi for a given platform. But imagine
the maintenance headaches we'd have keeping track of multiple classes, al named "Window" but each implemented
on adifferent window system. Alternatively, we could create implementation-specific subclasses of each classin
the Window hierarchy—and end up with another subclass explosion problem like the one we had trying to add
embellishments. Both of these alternatives have another drawback: Neither gives us the flexibility to change the
window system we use after we've compiled the program. So we'll have to keep severa different executables
around as well.

Neither alternative is very appealing, but what else can we do? The same thing we did for formatting and
embellishment, namely, encapsulate the concept that varies. What variesin this case is the window system
implementation. If we encapsulate a window system'’s functionality in an object, then we can implement our
Window class and subclasses in terms of that object's interface. Moreover, if that interface can serve al the window
systems we're interested in, then we won't have to change Window or any of its subclasses to support different
window systems. We can configure window objects to the window system we want simply by passing them the
right window system-encapsulating object. We can even configure the window at run-time.

Window and WindowImp

WEe'l define a separate Windowl mp class hierarchy in which to hide different window system implementations.

WindowlImp is an abstract class for objects that encapsulate window system-dependent code. To make Lexi work
on aparticular window system, we configure each window object with an instance of a Windowlmp subclass for
that system. The following diagram shows the relationship between the Window and Windowlmp hierarchies:

Windaw
imp
Raisalt o e Windowlmp
DrawRecty...) DeviceBaiee(}
/K DevicaRect.)
ApplicationWindow DialogWindow
leonWindow MacWindowlmp PMWindowlmp XWindowlmp
DeviceRaise() DeviceRaise() DeviceHaise()
DreviceRact(...) DeviceRact...] DeviceHect]...)

By hiding the implementations in WindowlImp classes, we avoid polluting the Window classes with window system
dependencies, which keeps the Window class hierarchy comparatively small and stable. Meanwhile we can easily
extend the implementation hierarchy to support new window systems.

WindowlImp Subclasses
Subclasses of Windowlmp convert requests into window system-specific operations. Consider the example we used
in Section 2.2. We defined the Rect angl e: : Dr awin terms of the Dr awRect operation on the Window
instance:
voi d Rectangle::Draw (W ndow w) {
w >Dr awRect (_x0, _yO0, _x1, _y1);
}

The default implementation of Dr awRect uses the abstract operation for drawing rectangles declared by

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap2fs.htm (15 of 32) [21/08/2002 19:04:54]

A Case Study

Windowlmp:

voi d W ndow: : DrawRect (
Coord x0, Coord y0, Coord x1, Coord yl
) A

}

_i np->Devi ceRect (x0, y0, x1, yl);

where _i np isamember variable of Window that stores the WindowlImp with which the Window is configured.
The window implementation is defined by the instance of the Windowlmp subclassthat _i np pointsto. For an
XWindowlmp (that is, a Windowlmp subclass for the X Window System), the Devi ceRect 'simplementation
might look like

voi d XW ndow np: : Devi ceRect (
Coord x0, Coord y0, Coord x1, Coord yl

) A

int x = round(m n(x0, x1));

int y =round(mn(y0, yl1));

int w=round(abs(x0 - x1));

int h = round(abs(y0 - y1));

XDr awRect angl e(_dpy, _winid, _gc, X, y, w, h);
}

Devi ceRect isdefined like this because XDr awRect angl e (the X interface for drawing arectangle) defines a
rectanglein terms of its lower |eft corner, its width, and its height. Devi ceRect must compute these values from
those supplied. First it ascertains the lower left corner (since (X0, y0) might be any one of the rectangle's four
corners) and then cal culates the width and height.

PMWindowImp (a subclass of Windowlmp for Presentation Manager) would define Devi ceRect differently:

voi d PMN ndow np: : Devi ceRect (
Coord x0, Coord y0, Coord x1, Coord yl

) A

Coord left = mn(x0, x1);

Coord right = max(x0, x1);

Coord bottom = min(y0, yl);

Coord top = max(y0, yl);

PPO NTL point[4];

point[0].x = left; point[0].y = top;

point[1].x = right; point[1].y = top;

point[2].x = right; point[2].y = bottom

point[3].x = left; point[3].y = bottom

if (
(Gpi Begi nPat h(_hps, 1L) == false) ||
(Gpi Set Current Position(_hps, &point[3]) == false) ||
(Gpi Pol yLi ne(_hps, 4L, point) == GPI _ERROR) ||
(Gpi EndPat h(_hps) == fal se)

) A
[l report error

} else {
G&pi StrokePat h(_hps, 1L, OL);

}

}

Why isthis so different from the X version? Well, PM doesn't have an operation for drawing rectangles explicitly as
X does. Instead, PM has a more general interface for specifying vertices of multisegment shapes (called a path) and
for outlining or filling the area they enclose.

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap2fs.htm (16 of 32) [21/08/2002 19:04:54]

A Case Study

PM'simplementation of Devi ceRect isobviously quite different from X's, but that doesn't matter. WindowlImp
hides variations in window system interfaces behind a potentially large but stable interface. That lets Window
subclass writers focus on the window abstraction and not on window system details. It also lets us add support for
new window systems without disturbing the Window classes.

Configuring Windows with WindowImps

A key issue we haven't addressed is how awindow gets configured with the proper Windowlmp subclassin the first
place. Stated another way, when does _i np get initialized, and who knows what window system (and consequently
which WindowlImp subclass) isin use? The window will need some kind of WindowlImp before it can do anything
interesting.

There are several possihilities, but we'll focus on one that uses the Abstract Factory (87) pattern. We can define an

abstract factory class WindowSystemFactory that provides an interface for creating different kinds of window
system-dependent implementation objects:

cl ass W ndowSyst enfactory {

public:

virtual W ndow np* CreateW ndow np() = O;

virtual Colorlnp* CreateColorlnp() = 0;

virtual Fontlnp* CreateFontlnp() = O;

/[l a "Create..." operation for all w ndow system resources
i

Now we can define a concrete factory for each window system:

cl ass PMW ndowSyst enfFactory : public W ndowSystenfactory ({
virtual W ndow np* Creat eW ndow np()
{ return new PMW ndow np; }
...
b

cl ass XW ndowSyst enfactory : public WndowSystenfactory {
virtual W ndow np* Creat eW ndow nmp()
{ return new XW ndow np; }
...

}s

The Window base class constructor can use the W ndowSy st enfact or y interface to initialize the _i np
member with the WindowImp that's right for the window system:

W ndow: : W ndow () {
_inmp = wi ndowSyst enfact or y- >Cr eat eW ndowl np() ;

}

Thew ndowSyst enfact or y variable is awell-known instance of a WindowSystemFactory subclass, akin to
the well-known gui Fact or y variable defining the look and feel. Thewi ndowSyst enfact or y variable can be
initialized in the same way.

Bridge Pattern

The Windowlmp class defines an interface to common window system facilities, but its design is driven by

different constraints than Window's interface. Application programmers won't deal with Windowlmp's interface
directly; they only deal with Window objects. So WindowlImp's interface needn’'t match the application
programmer's view of the world, as was our concern in the design of the Window class hierarchy and interface.
Windowlmp's interface can more closely reflect what window systems actually provide, warts and all. It can be
biased toward either an intersection or a union of functionality approach, whichever suits the target window systems
best.

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap2fs.htm (17 of 32) [21/08/2002 19:04:54]

A Case Study

The important thing to realize is that Window's interface caters to the applications programmer, while Windowlmp
caters to window systems. Separating windowing functionality into Window and Windowlmp hierarchies lets us
implement and specialize these interfaces independently. Objects from these hierarchies cooperate to let Lexi work
without modification on multiple window systems.

The relationship between Window and WindowlImp is an example of the Bridge (151) pattern. The intent behind
Bridgeisto alow separate class hierarchies to work together even as they evolve independently. Our design criteria
led usto create two separate class hierarchies, one that supports the logical notion of windows, and another for
capturing different implementations of windows. The Bridge pattern lets us maintain and enhance our logical
windowing abstractions without touching window system-dependent code, and vice versa.

v User Operations

Some of Lexi's functionality is available through the document's WY SIWY G representation. Y ou enter and delete
text, move the insertion point, and select ranges of text by pointing, clicking, and typing directly in the document.
Other functionality is accessed indirectly through user operationsin Lexi's pull-down menus, buttons, and keyboard
accelerators. The functionality includes operations for

. creating a new document,

. opening, saving, and printing an existing document,

. cutting selected text out of the document and pasting it back in,

. changing the font and style of selected text,

. changing the formatting of text, such asits alignment and justification,
. Quitting the application,

. and onand on.

Lexi provides different user interfaces for these operations. But we don't want to associate a particular user
operation with a particular user interface, because we may want multiple user interfaces to the same operation (you
can turn the page using either a page button or a menu operation, for example). We may also want to change the
interface in the future.

Furthermore, these operations are implemented in many different classes. We as implementors want to access their
functionality without creating alot of dependencies between implementation and user interface classes. Otherwise
well end up with atightly coupled implementation, which will be harder to understand, extend, and maintain.

To further complicate matters, we want Lexi to support undo and redo8 of most but not all its functionality.
Specifically, we want to be able to undo document-modifying operations like delete, with which a user can destroy
lots of data inadvertently. But we shouldn't try to undo an operation like saving a drawing or quitting the
application. These operations should have no effect on the undo process. We also don't want an arbitrary limit on
the number of levels of undo and redo.

It's clear that support for user operations permeates the application. The challenge is to come up with a simple and
extensible mechanism that satisfies all of these needs.

Encapsulating a Request

From our perspective as designers, a pull-down menu is just another kind of glyph that contains other glyphs. What
distinguishes pull-down menus from other glyphs that have children is that most glyphs in menus do some work in
response to an up-click.

L et's assume that these work-performing glyphs are instances of a Glyph subclass called M enultem and that they
do their work in response to a request from a client.? Carrying out the request might involve an operation on one
object, or many operations on many objects, or something in between.

We could define a subclass of Menultem for every user operation and then hard-code each subclass to carry out the
request. But that's not really right; we don't need a subclass of Menultem for each request any more than we need a
subclass for each text string in a pull-down menu. Moreover, this approach couples the request to a particul ar user
interface, making it hard to fulfill the request through a different user interface.

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap2fs.htm (18 of 32) [21/08/2002 19:04:54]

A Case Study

To illustrate, suppose you could advance to the last page in the document both through a Menultem in a pull-down
menu and by pressing a pageicon at the bottom of Lexi's interface (which might be more convenient for short
documents). If we associate the request with a Menultem through inheritance, then we must do the same for the
page icon and any other kind of widget that might issue such arequest. That can give rise to a number of classes
approaching the product of the number of widget types and the number of requests.

What's missing is a mechanism that lets us parameterize menu items by the request they should fulfill. That way we
avoid aproliferation of subclasses and allow for greater flexibility at run-time. We could parameterize Menultem
with afunction to call, but that's not a complete solution for at least three reasons:

1. It doesn't address the undo/redo problem.

2. It'shard to associate state with a function. For example, a function that changes the font needs to know
which font.

3. Functions are hard to extend, and it's hard to reuse parts of them.

These reasons suggest that we should parameterize M enultems with an object, not afunction. Then we can use
inheritance to extend and reuse the request's implementation. We also have a place to store state and implement
undo/redo functionality. Here we have another example of encapsulating the concept that varies, in this case a
request. We'll encapsulate each request in acommand object.

Command Class and Subclasses

First we define a Command abstract classto provide an interface for issuing arequest. The basic interface consists
of asingle abstract operation called "Execute." Subclasses of Command implement Execute in different waysto
fulfill different requests. Some subclasses may delegate part or all of the work to other objects. Other subclasses
may bein aposition to fulfill the request entirely on their own (see Figure 2.11). To the requester, however, a

Command object is a Command object—they are treated uniformly.

Command

Executef}

A

PasteCommand FontCommand SaveCommand ‘—save GuitCommand
Executa() Execute(} ¢ Executel) Executel() G
buffer ! mewFont ! E i
T T
! ! pop up a dialagh“ if (document is modified) { T
L =] — box that Ietsﬁ_:ge : save-=Exacute])
USEr Nams
paste butter make %lemfed document, and quit the application
into documeant text appear in then save the
newFont document under
that nama

Figure2.11: Partial Command class hierarchy

Now Menultem can store a Command object that encapsulates a request (Figure 2.12). We give each menu item
object an instance of the Command subclass that's suitable for that menu item, just as we specify the text to appear
in the menu item. When a user chooses a particular menu item, the Menultem simply calls Execute on its Command
object to carry out the request. Note that buttons and other widgets can use commands in the same way menu items
do.

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap2fs.htm (19 of 32) [21/08/2002 19:04:54]

A Case Study

Glyph

command

Menultem [, = Command

Clicked() § Executey)

commnd—:Execu!e[}:h |

Figure 2.12: Menultem-Command relationship

Undoability

Undo/redo is an important capability in interactive applications. To undo and redo commands, we add an Unexecute
operation to Command's interface. Unexecute reverses the effects of a preceding Execute operation using whatever
undo information Execute stored. In the case of a FontCommand, for example, the Execute operation would store
the range of text affected by the font change along with the original font(s). FontCommand's Unexecute operation
would restore the range of text to its original font(s).

Sometimes undoability must be determined at run-time. A request to change the font of a selection does nothing if
the text already appears in that font. Suppose the user selects some text and then requests a spurious font change.
What should be the result of a subsequent undo request? Should a meaningless change cause the undo request to do
something equally meaningless? Probably not. If the user repeats the spurious font change several times, he
shouldn't have to perform exactly the same number of undo operations to get back to the last meaningful operation.
If the net effect of executing a command was nothing, then there's no need for a corresponding undo request.

So to determine if acommand is undoable, we add an abstract Reversible operation to the Command interface.
Reversible returns a Boolean value. Subclasses can redefine this operation to return true or false based on run-time
criteria.

Command History

Thefinal step in supporting arbitrary-level undo and redo is to define acommand history, or list of commands that
have been executed (or unexecuted, if some commands have been undone). Conceptually, the command history
looks like this:

- past commands
present
Each circle represents a Command object. In this case the user has issued four commands. The leftmost command

was issued first, followed by the second-leftmost, and so on until the most recently issued command, whichis
rightmost. The line marked "present" keeps track of the most recently executed (and unexecuted) command.

To undo the last command, we simply call Unexecute on the most recent command:

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap2fs.htm (20 of 32) [21/08/2002 19:04:54]

A Case Study

0,0,0,0

Unexecute ()

present

After unexecuting the command, we move the "present” line one command to the left. If the user chooses undo
again, the next-most recently issued command will be undone in the same way, and we're left in the state depicted

O-O0O0

past | future

presant

Y ou can see that by simply repeating this procedure we get multiple levels of undo. The number of levelsislimited
only by the length of the command history.

To redo acommand that's just been undone, we do the same thing in reverse. Commands to the right of the present
line are commands that may be redone in the future. To redo the last undone command, we call Execute on the
command to the right of the present line:

\Execute{]

present

Then we advance the present line so that a subsequent redo will call redo on the following command in the future.

00,0, @

-—— past | future

present

Of coursg, if the subsequent operation is not another redo but an undo, then the command to the left of the present
line will be undone. Thus the user can effectively go back and forth in time as needed to recover from errors.

Command Pattern

Lexi's commands are an application of the Command (233) pattern, which describes how to encapsulate a request.
The Command pattern prescribes a uniform interface for issuing requests that lets you configure clientsto handle
different requests. The interface shields clients from the request's implementation. A command may delegate all,
part, or none of the request's implementation to other objects. Thisis perfect for applications like Lexi that must
provide centralized access to functionality scattered throughout the application. The pattern also discusses undo and
redo mechanisms built on the basic Command interface.

v Spelling Checking and Hyphenation

The last design problem involves textual analysis, specifically checking for misspellings and introducing
hyphenation points where needed for good formatting.

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap2fs.htm (21 of 32) [21/08/2002 19:04:54]

A Case Study

The constraints here are similar to those we had for the formatting design problem in Section 2.3. Aswas the case
for linebreaking strategies, there's more than one way to check spelling and compute hyphenation points. So here
too we want to support multiple algorithms. A diverse set of algorithms can provide a choice of space/time/quality
trade-offs. We should make it easy to add new algorithms as well.

We also want to avoid wiring this functionality into the document structure. This goal is even more important here
than it was in the formatting case, because spelling checking and hyphenation are just two of potentially many kinds
of analyses we may want Lexi to support. Inevitably well want to expand Lexi's analytical abilities over time. We
might add searching, word counting, a calculation facility for adding up tabular values, grammar checking, and so
forth. But we don't want to change the Glyph class and all its subclasses every time we introduce new functionality
of this sort.

There are actually two piecesto this puzzle: (1) accessing the information to be analyzed, which we have scattered
over the glyphs in the document structure, and (2) doing the analysis. We'll look at these two pieces separately.

Accessing Scattered Information

Many kinds of analysis require examining the text character by character. The text we need to analyze is scattered
throughout a hierarchical structure of glyph objects. To examine text in such a structure, we need an access
mechanism that has knowledge about the data structures in which objects are stored. Some glyphs might store their
childrenin linked lists, others might use arrays, and still others might use more esoteric data structures. Our access
mechanism must be able to handle all of these possibilities.

An added complication isthat different analyses access information in different ways. Most analyses will traverse
the text from beginning to end. But some do the opposite—a reverse search, for example, needs to progress through
the text backward rather than forward. Evaluating algebraic expressions could require an inorder traversal.

So our access mechanism must accommodate differing data structures, and we must support different kinds of
traversals, such as preorder, postorder, and inorder.

Encapsulating Access and Traversal

Right now our glyph interface uses an integer index to let clients refer to children. Although that might be
reasonable for glyph classes that store their children in an array, it may be inefficient for glyphs that use alinked
list. An important role of the glyph abstraction is to hide the data structure in which children are stored. That way
we can change the data structure a glyph class uses without affecting other classes.

Therefore only the glyph can know the data structure it uses. A corollary isthat the glyph interface shouldn't be
biased toward one data structure or another. It shouldn't be better suited to arrays than to linked lists, for example,
asitisnow.

We can solve this problem and support several different kinds of traversals at the same time. We can put multiple
access and traversal capabilities directly in the glyph classes and provide a way to choose among them, perhaps by
supplying an enumerated constant as a parameter. The classes pass this parameter around during atraversal to
ensure they're al doing the same kind of traversal. They have to pass around any information they've accumulated
during traversal.

We might add the following abstract operations to Glyph's interface to support this approach:

void First(Traversal kind)
voi d Next ()

bool [|sDone()

G yph* GetCurrent()

void I nsert(d yph*)

Operations Fi r st , Next , and | sDone control thetraversal. Fi r st initidizesthe traversal. It takes the kind of
traversal as a parameter of type Tr aver sal , an enumerated constant with values such as CHI LDREN (to traverse
the glyph's immediate children only), PREORDER (to traverse the entire structure in preorder), POSTORDER, and

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap2fs.htm (22 of 32) [21/08/2002 19:04:54]

A Case Study

| NORDER. Next advances to the next glyph in the traversal, and | sDone reports whether the traversal is over or
not. Get Cur r ent replacesthe Chi | d operation; it accesses the current glyph in thetraversal. | nsert replaces
the old operation; it inserts the given glyph at the current position. An analysis would use the following C++ code to
do apreorder traversal of aglyph structure rooted at g:

d yph* g;

for (g->First(PREORDER); !g->IsDone(); g->Next()) {
d yph* current = g->GetCurrent();

/! do sone anal ysis

}

Notice that we've banished the integer index from the glyph interface. There's no longer anything that biases the
interface toward one kind of collection or another. We've also saved clients from having to implement common
kinds of traversals themselves.

But this approach still has problems. For one thing, it can't support new traversals without either extending the set
of enumerated values or adding new operations. Say we wanted to have a variation on preorder traversal that
automatically skips non-textual glyphs. We'd have to changethe Tr aver sal enumeration to include something
like TEXTUAL _PREORDER.

Wed like to avoid changing existing declarations. Putting the traversal mechanism entirely in the Glyph class
hierarchy makes it hard to modify or extend without changing lots of classes. It's also difficult to reuse the
mechanism to traverse other kinds of object structures. And we can't have more than one traversal in progress on a
structure.

Once again, a better solution is to encapsulate the concept that varies, in this case the access and traversal
mechanisms. We can introduce a class of objects called iter ator s whose sole purpose isto define different sets of
these mechanisms. We can use inheritance to | et us access different data structures uniformly and support new kinds
of traversals aswell. And we won't have to change glyph interfaces or disturb existing glyph implementations to do
it.

Iterator Class and Subclasses

WEe'll use an abstract class called Iterator to define a general interface for access and traversal. Concrete subclasses
like Arraylterator and Listlterator implement the interface to provide accessto arrays and lists, while
Preorderlterator, Postorderlterator, and the like implement different traversals on specific structures. Each
Iterator subclass has a reference to the structure it traverses. Subclass instances are initialized with this reference
when they are created. Figure 2.13 illustrates the I terator class along with several subclasses. Notice that we've

added a Createlterator abstract operation to the Glyph class interface to support iterators.

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap2fs.htm (23 of 32) [21/08/2002 19:04:54]

A Case Study

Fithemrur

First{]

Mext(}
IsDonef)
Curranifieny}

A

) Preorderlterator Arraylterator Listiterator Mulllterator
flerators
First() First() First() First()
Mext() Mexil) Mexd() Mexil]
IsDone() L —] IsBone() IsDone() - IsDone) D"'-:
Currentitem() Currentiterm) Currentitemi) Currentitemi(} :
|
root currentltem !
resturm rue
I Glyph -
-
Createlleratorf) o-r-—--——- retum new Mulifterator H

Figure 2.13: Iterator class and subclasses

The Iterator interface provides operations First, Next, and IsDone for controlling the traversal. The Listlterator class
implements First to point to the first element in the list, and Next advances the iterator to the next item in thelist.
IsDone returns whether or not the list pointer points beyond the last element in the list. Currentltem dereferences
the iterator to return the glyph it pointsto. An Arr ayl t er at or classwould do similar things but on an array of

glyphs.

Now we can access the children of a glyph structure without knowing its representation:

dyph* g;

Iterator<d yph*>* i = g->Createlterator();

for (i->First(); 'i->IsDone(); i->Next()) {
d yph* child = i->Currentltem);

/1 do sonething with current child

}

Createlterator returns a Nulllterator instance by default. A Nulllterator is a degenerate iterator for glyphs that have
no children, that is, leaf glyphs. Nulllterator's IsDone operation always returns true.

A glyph subclass that has children will override Createlterator to return an instance of a different Iterator subclass.
Which subclass depends on the structure that stores the children. If the Row subclass of Glyph storesits childrenin
alist _chi | dr en, then its Createlterator operation would look like this:

Iterator<d yph*>* Row :Createlterator () {
return new Listlterator<d yph*>(_children);
}

Iterators for preorder and inorder traversalsimplement their traversalsin terms of glyph-specific iterators. The
iterators for these traversals are supplied the root glyph in the structure they traverse. They call Createlterator on the
glyphsin the structure and use a stack to keep track of the resulting iterators.

For example, class Pr eor der | t er at or getstheiterator from the root glyph, initializes it to point to its first

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap2fs.htm (24 of 32) [21/08/2002 19:04:54]

A Case Study

element, and then pushes it onto the stack:

void Preorderlterator::First () {
Iterator<d yph*>* i = root->Createlterator();

ifo(i) A
i->First();
_iterators. RemoveAl | ();
_iterators.Push(i);

}

Current |t emwould simply call Current | t emon theiterator at the top of the stack:

G yph* Preorderlterator::Currentltem () const {
return
_iterators.Size() >0 ?
_iterators. Top()->Currentltem() : O;

}

The Next operation gets the top iterator on the stack and asks its current item to create an iterator, in an effort to
descend the glyph structure as far as possible (thisis apreorder traversal, after all). Next setsthe new iterator to
thefirst item in the traversal and pushesit on the stack. Then Next teststhe latest iterator; if its| sDone operation
returns true, then we've finished traversing the current subtree (or leaf) in the traversal. In that case, Next popsthe
top iterator off the stack and repeats this process until it finds the next incomplete traversal, if thereis one; if not,
then we have finished traversing the structure.

void Preorderlterator::Next () {
Iterator<d yph*>* | =
_iterators.Top()->Currentlten()->Createlterator();

i->First();
_iterators. Push(i);

while (

_iterators.Size() > 0 & _iterators. Top()->IsDone()
) {

delete _iterators. Pop();

_iterators. Top()->Next ();

}

Notice how the Iterator class hierarchy lets us add new kinds of traversals without modifying glyph classes—we
simply subclass| t er at or and add a new traversal aswe have with Pr eor der | t er at or . Glyph subclasses use
the same interface to give clients access to their children without revealing the underlying data structure they use to
store them. Because iterators store their own copy of the state of atraversal, we can carry on multiple traversals
simultaneously, even on the same structure. And though our traversals have been over glyph structuresin this
example, there's no reason we can't parameterize aclasslike Pr eor der | t er at or by the type of object in the
structure. We'd use templates to do that in C++. Then we can reuse the machinery in Pr eor der | t er at or to
traverse other structures.

Ilterator Pattern

The Iterator (257) pattern captures these techniques for supporting access and traversal over object structures. It's
applicable not only to composite structures but to collections as well. It abstracts the traversal algorithm and shields
clients from the internal structure of the objects they traverse. The Iterator pattern illustrates once more how
encapsulating the concept that varies helps us gain flexibility and reusability. Even so, the problem of iteration has
surprising depth, and the Iterator pattern covers many more nuances and trade-offs than we've considered here.

Traversal versus Traversal Actions

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap2fs.htm (25 of 32) [21/08/2002 19:04:54]

A Case Study

Now that we have away of traversing the glyph structure, we need to check the spelling and do the hyphenation.
Both analyses involve accumulating information during the traversal.

First we have to decide where to put the responsibility for analysis. We could put it in the Iterator classes, thereby
making analysis an integral part of traversal. But we get more flexibility and potential for reuse if we distinguish
between the traversal and the actions performed during traversal. That's because different analyses often require the
same kind of traversal. Hence we can reuse the same set of iterators for different analyses. For example, preorder
traversal is common to many analyses, including spelling checking, hyphenation, forward search, and word count.

So analysis and traversal should be separate. Where el se can we put the responsibility for analysis? We know there
are many kinds of analyses we might want to do. Each analysis will do different things at different pointsin the
traversal. Some glyphs are more significant than others depending on the kind of analysis. If we're checking
spelling or hyphenating, we want to consider character glyphs and not graphical ones like lines and bitmapped
images. If we're making color separations, we'd want to consider visible glyphs and not invisible ones. Inevitably,
different analyses will analyze different glyphs.

Therefore a given analysis must be able to distinguish different kinds of glyphs. An obvious approach isto put the
analytical capability into the glyph classes themselves. For each analysis we can add one or more abstract
operations to the Glyph class and have subclasses implement them in accordance with the role they play in the
analysis.

But the trouble with that approach is that we'll have to change every glyph class whenever we add a new kind of
analysis. We can ease this problem in some cases: If only afew classes participate in the analysis, or if most classes
do the analysis the same way, then we can supply a default implementation for the abstract operation in the Glyph
class. The default operation would cover the common case. Thus we'd limit changes to just the Glyph class and
those subclasses that deviate from the norm.

Y et even if adefault implementation reduces the number of changes, an insidious problem remains. Glyph's
interface expands with every new analytical capability. Over time the analytical operations will start to obscure the
basic Glyph interface. It becomes hard to see that a glyph's main purpose isto define and structure objects that have
appearance and shape—that interface getslost in the noise.

Encapsulating the Analysis

From all indications, we need to encapsulate the analysis in a separate object, much like we've done many times
before. We could put the machinery for a given analysisinto its own class. We could use an instance of thisclassin
conjunction with an appropriate iterator. The iterator would "carry"” the instance to each glyph in the structure. The
analysis object could then perform a piece of the analysis at each point in the traversal. The analyzer accumulates
information of interest (charactersin this case) as the traversal proceeds:

ilerator
o

Ilall

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap2fs.htm (26 of 32) [21/08/2002 19:04:54]

A Case Study

The fundamental question with this approach is how the analysis object distinguishes different kinds of glyphs
without resorting to type tests or downcasts. We don't want aSpel | i ngChecker classto include (pseudo)code
like

voi d Spel | i ngChecker:: Check (d yph* glyph) {
Character* c;
Row* r;
| mage* i;

if (¢ = dynam c_cast <Character*>(glyph)) {
/1 analyze the character

} else if (r = dynam c_cast <Row*>(gl yph)) {
/] prepare to analyze r's children

} else if (i = dynam c_cast <l nmage*>(glyph)) {
/1 do not hing

}
}

This codeis pretty ugly. It relies on fairly esoteric capabilities like type-safe casts. It's hard to extend as well. Welll
have to remember to change the body of this function whenever we change the Glyph class hierarchy. In fact, thisis
the kind of code that object-oriented |anguages were intended to eliminate.

We want to avoid such a brute-force approach, but how? Let's consider what happens when we add the following
abstract operation to the Glyph class:

voi d CheckMe(Spel I'i ngChecker &)
We define CheckMe in every Glyph subclass as follows:

voi d d yphSubcl ass: : CheckMe (Spel I i ngChecker & checker) {
checker . Checkd yphSubcl ass(t hi s);
}

where @ yphSubcl ass would be replaced by the name of the glyph subclass. Note that when CheckMe is
called, the specific Glyph subclass is known—after al, we're in one of its operations. In turn, the

Spel I'i ngChecker classinterface includes an operation like Checkd yphSubcl ass for every Glyph
subclasslo:

cl ass Spel |l i ngChecker {
publi c:
Spel | i ngChecker () ;

virtual void CheckCharacter(Character*);
virtual void CheckRow(Row);
virtual void Checkl mage(l mage*);

/1 ... and so forth
Li st <char*>& Get M sspel | i ngs();

pr ot ect ed:
virtual bool I1sM sspelled(const char*);

private:
char _current Wrd[MAX_ WORD_SI ZE] ;
Li st<char*> _m sspellings;

s

Spel | i ngChecker 'schecking operation for Char act er glyphs might look something like this:

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap2fs.htm (27 of 32) [21/08/2002 19:04:54]

A Case Study

voi d Spel | i ngChecker:: CheckCharacter (Character* c) {
const char ch = c->Get Char Code();

if (isalpha(ch)) {
/1 append al phabetic character to _currentWrd

} else {
/1 we hit a nonal phabetic character

if (IsMsspelled(_currentWrd)) {
/1l add _currentWord to _misspellings
_m sspel lings. Append(strdup(_currentWrd));

}

_currentWword[0] = "\0";
/'l reset _currentWord to check next word

}

Notice we've defined a special Get Char Code operation on just the Char act er class. The spelling checker can
deal with subclass-specific operations without resorting to type tests or casts—it lets us treat objects specially.

CheckChar act er accumulates alphabetic charactersinto the _cur r ent Wor d buffer. When it encounters a
nonal phabetic character, such as an underscore, it usesthel sM sspel | ed operation to check the spelling of the
wordin _curr ent Wor d.11 If the word is misspelled, then CheckChar act er addsthe word to the list of
misspelled words. Then it must clear out the _cur r ent Wor d buffer to ready it for the next word. When the
traversal isover, you can retrieve the list of misspelled words with the Get M sspel | i ngs operation.

Now we can traverse the glyph structure, calling CheckMe on each glyph with the spelling checker as an argument.
This effectively identifies each glyph to the SpellingChecker and prompts the checker to do the next increment in
the spelling check.

Spel | i ngChecker spel Ii ngChecker;
Conposition* c;

/11

A yph* g;

Preorderlterator i(c);

for (i.First(); 'i.lsDone(); i.Next()) {
g=1i.Currentltem);

g- >CheckMe(spel I i ngChecker);
}

The following interaction diagram illustrates how Char act er glyphsand the Spel | i ngChecker object work
together:

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap2fs.htm (28 of 32) [21/08/2002 19:04:54]

A Case Study

aCharacter ("a") anotherCharacter ("_" aSpellingChecker
CheckMea{aSpeillingChecker))
CheckCharactar(this) -
GetCharacter)
ChackMe{aSpellingChecker) i I checks
CheckCharacter(this) compisted
N GetCharacter()

e
"
o

This approach works for finding spelling errors, but how does it help us support multiple kinds of analysis? It looks
like we have to add an operation like CheckMe(Spel | i ngChecker &) to Glyph and its subclasses whenever
we add anew kind of analysis. That'strue if we insist on an independent class for every analysis. But there's no
reason why we can't give all analysis classes the same interface. Doing so lets us use them polymorphically. That
means we can replace analysis-specific operations like CheckMe(Spel | i ngChecker &) with an analysis-
independent operation that takes a more general parameter.

Visitor Class and Subclasses

WEe'l use the term visitor to refer generally to classes of objects that "visit" other objects during a traversal and do
something appropriate.12 In this case we can definea Vi si t or classthat defines an abstract interface for visiting
glyphsin astructure.

class Visitor {

publi c:
virtual void VisitCharacter(Character*) { }
virtual void VisitRow(Row) { }
virtual void Visitlmage(lnmage*) { }

// ... and so forth

b

Concrete subclasses of Vi si t or perform different analyses. For example, we could have a

Spel | i ngChecki ngVi si t or subclassfor checking spelling, and aHyphenat i onVi si t or subclassfor
hyphenation. Spel | i ngChecki ngVi si t or would be implemented exactly as we implemented

Spel | i ngChecker above, except the operation names would reflect the more general Vi si t or interface. For
example, CheckChar act er would becaled Vi si t Char act er.

Since CheckMe isn't appropriate for visitors that don't check anything, we'll give it amore general name:

Accept . Itsargument must also changeto takea Vi si t or &, reflecting the fact that it can accept any visitor. Now
adding anew analysis requires just defining a new subclass of Vi si t or —we don't have to touch any of the glyph
classes. We support all future analyses by adding this one operation to A yph and its subclasses.

We've already seen how spelling checking works. We use a similar approach in Hyphenat i onVi si t or to
accumulate text. But once Hyphenat i onVi si t or 'sVi si t Char act er operation has assembled an entire
word, it works alittle differently. Instead of checking the word for misspelling, it applies a hyphenation a gorithm
to determine the potential hyphenation pointsin the word, if any. Then at each hyphenation point, it inserts a
discretionary glyph into the composition. Discretionary glyphs are instances of Di scr et i onary, asubclass of

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap2fs.htm (29 of 32) [21/08/2002 19:04:54]

A Case Study

a yph.

A discretionary glyph has one of two possible appearances depending on whether or not it isthe last character on a
line. If it'sthe last character, then the discretionary looks like a hyphen; if it's not at the end of aline, then the
discretionary has no appearance whatsoever. The discretionary checks its parent (a Row object) to seeif it isthe last
child. The discretionary makes this check whenever it's called on to draw itself or calculate its boundaries. The
formatting strategy treats discretionaries the same as whitespace, making them candidates for ending aline. The
following diagram shows how an embedded discretionary can appear.

_—— |—————————————|

ialuminum alloy] o {iumi 1!
Ty i jlaluminum al- ||

Visitor Pattern

What we've described here is an application of the Visitor (331) pattern. The Visitor class and its subclasses
described earlier are the key participants in the pattern. The Visitor pattern captures the technique we've used to
allow an open-ended number of analyses of glyph structures without having to change the glyph classes themselves.
Another nice feature of visitorsis that they can be applied not just to composites like our glyph structures but to any
object structure. That includes sets, lists, even directed-acyclic graphs. Furthermore, the classes that a visitor can
visit needn't be related to each other through a common parent class. That means visitors can work across class
hierarchies.

An important question to ask yourself before applying the Visitor pattern is, Which class hierarchies change most
often? The pattern is most suitable when you want to be able to do a variety of different things to objects that have a
stable class structure. Adding anew kind of visitor requires no change to that class structure, which is especially
important when the class structure is large. But whenever you add a subclass to the structure, you'll also have to
update all your visitor interfacesto includeaVi si t . . . operation for that subclass. In our example that means
adding anew A yph subclass called Foo will require changing Vi si t or and all its subclasses to include a

Vi si t Foo operation. But given our design constraints, we're much more likely to add a new kind of analysisto
Lexi than anew kind of Glyph. So the Visitor pattern is well-suited to our needs.

vy Summary

We've applied eight different patternsto Lexi's design:

1. Composite (163) to represent the document's physical structure,

2. Strategy (315) to alow different formatting algorithms,
3. Decorator (175) for embellishing the user interface,

4. Abstract Factory (87) for supporting multiple look-and-feel standards,

5. Bridge (151) to allow multiple windowing platforms,

6. Command (233) for undoable user operations,

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap2fs.htm (30 of 32) [21/08/2002 19:04:54]

A Case Study

7. Iterator (257) for accessing and traversing object structures, and

8. Visitor (331) for alowing an open-ended number of analytical capabilities without complicating the
document structure's implementation.

None of these design issuesis limited to document editing applications like Lexi. Indeed, most nontrivial
applications will have occasion to use many of these patterns, though perhaps to do different things. A financial
analysis application might use Composite to define investment portfolios made up of subportfolios and accounts of
different sorts. A compiler might use the Strategy pattern to allow different register allocation schemes for different
target machines. Applications with a graphical user interface will probably apply at least Decorator and Command
just as we have here.

While we've covered several major problemsin Lexi's design, there are lots of others we haven't discussed. Then
again, this book describes more than just the eight patterns we've used here. So as you study the remaining patterns,
think about how you might use each onein Lexi. Or better yet, think about using them in your own designs!

&

p Pattern Catalog
4 Introduction

1l exi's design is based on Doc, atext editing application developed by Calder [CL92].

2Authors often view the document in terms of its logical structure aswell, that is, in terms of sentences, paragraphs,
sections, subsections, and chapters. To keep this example simple, our internal representation won't store information
about the logical structure explicitly. But the design solution we describe works equally well for representing such
information.

3Calder was the first to use the term "glyph" in this context [CL90]. Most contemporary document editors don't use
an object for every character, presumably for efficiency reasons. Calder demonstrated that this approach isfeasible
in histhesis [Cal93]. Our glyphs are less sophisticated than hisin that we have restricted oursto strict hierarchies
for simplicity. Calder's glyphs can be shared to reduce storage costs, thereby forming directed-acyclic graph
structures. We can apply the Flyweight (195) pattern to get the same effect, but we'll leave that as an exercise for
the reader.

4The interface we describe here is purposely minimal to keep the discussion simple. A complete interface would
include operations for managing graphical attributes such as color, font, and coordinate transformations, plus
operations for more sophisticated child management.

SAn integer index is probably not the best way to specify a glyph's children, depending on the data structure the
glyph uses. If it storesits children in alinked list, then a pointer into the list would be more efficient. We'll see a
better solution to the indexing problem in Section 2.8, when we discuss document analysis.

6The user will have even more to say about the document's logical structure—the sentences, paragraphs, sections,
chapters, and so forth. The physical structureislessinteresting by comparison. Most people don't care where the
linebreaks in a paragraph occur as long as the paragraph is formatted properly. The sameis true for formatting
columns and pages. Thus users end up specifying only high-level constraints on the physical structure, leaving L exi
to do the hard work of satisfying them.

7The compositor must get the character codes of Character glyphsin order to compute the linebreaks. In Section 2.8

welll see how to get thisinformation polymorphically without adding a character-specific operation to the Glyph
interface.

8That is, redoing an operation that was just undone.

9Conceptually, the client is Lexi's user, but in reality it's another object (such as an event dispatcher) that manages
inputs from the user.

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap2fs.htm (31 of 32) [21/08/2002 19:04:55]

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/patcafs.htm
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/patcafs.htm

A Case Study

10 We could use function overloading to give each of these member functions the same name, since their parameters
dready differentiate them. We've given them different names here to emphasize their differences, especially when
they're called.

11} sM sspel | ed implements the spelling algorithm, which we won't detail here because we've made it
independent of Lexi's design. We can support different algorithms by subclassing Spel | i ngChecker ;
aternatively, we can apply the Strategy (315) pattern (as we did for formatting in Section 2.3) to support different
spelling checking algorithms.

12"visit" isjust adightly more general term for "analyze." It foreshadows the terminology we usein the design
pattern we're leading to.

Abstract Factory = Adapter = Bridge = Builder = Chain of Responsibility = Command « Composite «
De tor * Facade * Factory Method + Flyweight = Interpreter = lterator = Mediator = Memento =
Observer * Prototype « Proxy = Singleton » State » Strategy + Template Method « Visitor

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap2fs.htm (32 of 32) [21/08/2002 19:04:55]

Creational Patterns

Case Study | Pattern Catalog | Conclusion

© Creational Patterns

SEARCH

| Contents |ﬁ.|i|:|ntu Hﬂﬂdﬂ'5| Glossary | Notation | Foundation | Bibliography | Index | Pattern Map |

Creational design patterns abstract the instantiation process. They help make a system independent of
how its objects are created, composed, and represented. A class creational pattern uses inheritance to
vary the class that's instantiated, whereas an object creational pattern will delegate instantiation to
another object.

Creational patterns become important as systems evolve to depend more on object composition than class
inheritance. As that happens, emphasis shifts away from hard-coding afixed set of behaviors toward
defining asmaller set of fundamental behaviors that can be composed into any number of more complex
ones. Thus creating objects with particular behaviors requires more than simply instantiating a class.

There are two recurring themes in these patterns. First, they all encapsul ate knowledge about which
concrete classes the system uses. Second, they hide how instances of these classes are created and put
together. All the system at large knows about the objects is their interfaces as defined by abstract classes.
Consequently, the creational patterns give you alot of flexibility in what gets created, who creates it, how
it gets created, and when. They let you configure a system with "product” objects that vary widely in
structure and functionality. Configuration can be static (that is, specified at compile-time) or dynamic (at
run-time).

Sometimes creational patterns are competitors. For example, there are cases when either Prototype (117)
or Abstract Factory (87) could be used profitably. At other times they are complementary: Builder (97)
can use one of the other patterns to implement which components get built. Prototype (117) can use
Singleton (127) in its implementation.

Because the creational patterns are closely related, we'll study all five of them together to highlight their
similarities and differences. We'll also use acommon example—building a maze for a computer
game—to illustrate their implementations. The maze and the game will vary slightly from pattern to
pattern. Sometimes the game will be simply to find your way out of a maze; in that case the player will
probably only have alocal view of the maze. Sometimes mazes contain problems to solve and dangers to
overcome, and these games may provide a map of the part of the maze that has been explored.

WEe'll ignore many details of what can be in a maze and whether a maze game has a single or multiple
players. Instead, we'll just focus on how mazes get created. We define a maze as a set of rooms. A room
knows its neighbors; possible neighbors are another room, awall, or a door to another room.

The classes Room Door , and Wal | define the components of the maze used in al our examples. We
define only the parts of these classes that are important for creating a maze. Well ignore players,
operations for displaying and wandering around in a maze, and other important functionality that isn't
relevant to building the maze.

The following diagram shows the rel ationships between these classes:

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap3fs.htm (1 of 5) [21/08/2002 19:05:28]

javascript:loadApplet()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/helpfs.htm
javascript:build()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/patcafs.htm

Creational Patterns

IHI MapSi
Enterf}
sides Room Wall Doar
Enter() Enter() Entar()
Maze SetSidel) .
rooms gl GeiSide() isOpen
AddRoomi)
RoomMal) roomMumber

Each room has four sides. We use an enumeration Di r ect i on in C++ implementations to specify the
north, south, east, and west sides of aroom:
enum Direction {North, South,

East, West};

The Smalltalk implementations use corresponding symbols to represent these directions.

The class MapSi t e isthe common abstract class for al the components of amaze. To smplify the
example, MapSi t e defines only one operation, Ent er . I1ts meaning depends on what you're entering. If
you enter aroom, then your location changes. If you try to enter a door, then one of two things happen: If
the door is open, you go into the next room. If the door is closed, then you hurt your nose.

class MapSite {
publi c:

virtual void Enter() = O;

s

Ent er providesasimple basis for more sophisticated game operations. For example, if you arein a
room and say "Go East," the game can simply determine which MapSi t e isimmediately to the east and
then call Ent er onit. The subclass-specific Ent er operation will figure out whether your location
changed or your nose got hurt. In area game, Ent er could take the player object that's moving about as
an argument.

Roomisthe concrete subclass of MapSi t e that defines the key relationships between componentsin the
maze. It maintains references to other MapSi t e objects and stores aroom number. The number will
identify rooms in the maze.

cl ass Room :
publi c:
Roon(i nt

public MapSite {
r oom\o) ;

MapSi te* Get Side(Direction) const;
void Set Side(Direction, MapSite*);

virtual void Enter();

private:
MapSi te* _sides[4];
int _roomNunber;

s

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap3fs.htm (2 of 5) [21/08/2002 19:05:28]

Creational Patterns

The following classes represent the wall or door that occurs on each side of aroom.

class Wall : public MapSite {
publi c:
val 1 ();
virtual void Enter();
i
cl ass Door : public MapSite {
publi c:
Door (Roont = 0, Roon* = 0);
virtual void Enter();
Roomr O her Si deFr om(Roont) ;
private:
Roonm* _roont,;
Roonm* _roont;
bool _isOpen;
i

We need to know about more than just the parts of a maze. We'll also defineaMaze classto represent a
collection of rooms. Maze can also find a particular room given aroom number using its RooniNo
operation.

cl ass Maze {
publi c:
Maze();

voi d AddRoon{ Roont) ;

Roont RoomNo(i nt) const;
private:

I

H

RoomNo could do alook-up using alinear search, a hash table, or even assimple array. But we won't
worry about such details here. Instead, we'll focus on how to specify the components of a maze object.

Another class we define is MazeGane, which creates the maze. One straightforward way to create a
maze is with a series of operations that add components to a maze and then interconnect them. For
example, the following member function will create a maze consisting of two rooms with a door between
them:

Maze* MazeGane: : Creat eMaze () {
Maze* aMaze = new Maze;
Roont rl1 = new Roon(1);
Roon* r2 = new Roon(2);
Door* theDoor = new Door(rl, r2);

aMaze- >AddRoon(r 1) ;
aMaze- >AddRoon(r 2) ;

ri1->Set Si de(North, new Wall);
r1- >Set Si de(East, theDoor);
rl->Set Si de(Sout h, new Wall);
ril->Set Si de(\West, new Wl l);

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap3fs.htm (3 of 5) [21/08/2002 19:05:28]

Creational Patterns

r2->Set Si de(North, new Wall);
r2->Set Si de(East, new Vall);
r2- >Set Si de(Sout h, new Wal l);
r 2- >Set Si de(West, theDoor);

return aMvaze;

}

Thisfunction is pretty complicated, considering that all it doesis create a maze with two rooms. There
are obvious ways to make it smpler. For example, the Roomconstructor could initialize the sides with
walls ahead of time. But that just moves the code somewhere else. The real problem with this member
functionisn't its size but itsinflexibility. It hard-codes the maze layout. Changing the layout means
changing this member function, either by overriding it—which means reimplementing the whole
thing—or by changing parts of it—which is error-prone and doesn't promote reuse.

The creational patterns show how to make this design more flexible, not necessarily smaller. In
particular, they will make it easy to change the classes that define the components of a maze.

Suppose you wanted to reuse an existing maze layout for a new game containing (of all things)
enchanted mazes. The enchanted maze game has new kinds of components, like Door Needi ngSpel | ,
adoor that can be locked and opened subsequently only with aspell; and Enchant edRoom aroom
that can have unconventional itemsin it, like magic keys or spells. How can you change Cr eat eMaze
easily so that it creates mazes with these new classes of objects?

In this case, the biggest barrier to change lies in hard-coding the classes that get instantiated. The
creational patterns provide different ways to remove explicit references to concrete classes from code
that needs to instantiate them:

. If Cr eat eMaze callsvirtual functionsinstead of constructor calls to create the rooms, walls, and
doorsit requires, then you can change the classes that get instantiated by making a subclass of
MazeGane and redefining those virtual functions. This approach is an example of the Factory

Method (107) pattern.

. If Creat eMaze is passed an object as a parameter to use to create rooms, walls, and doors, then
you can change the classes of rooms, walls, and doors by passing a different parameter. Thisisan
example of the Abstract Factory (87) pattern.

. If Cr eat eMaze is passed an object that can create a new maze in its entirety using operations for
adding rooms, doors, and walls to the maze it builds, then you can use inheritance to change parts
of the maze or the way the maze is built. Thisis an example of the Builder (97) pattern.

. If Cr eat eMaze is parameterized by various prototypical room, door, and wall objects, which it
then copies and adds to the maze, then you can change the maze's composition by replacing these
prototypical objects with different ones. Thisis an example of the Prototype (117) pattern.

The remaining creational pattern, Singleton (127), can ensure there's only one maze per game and that all

game objects have ready access to it—without resorting to global variables or functions. Singleton also
makes it easy to extend or replace the maze without touching existing code.

'y
» Abstract Factory

4 Pattern Catalog

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap3fs.htm (4 of 5) [21/08/2002 19:05:28]

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/patcafs.htm
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/patcafs.htm

Creational Patterns

Abstract Factory = Adapter * Bridge * Builder + Chain of Responsibility » Command « Composite «
Decorator * Facade » Factory Method * Flyweight = Imterpreter » lterator = Mediator = Memento »
Observer = Prototype « Proxy + Singleton = State + Strategy *+ Template Method + Visitor

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap3fs.htm (5 of 5) [21/08/2002 19:05:28]

Abstract Factory

Case Study | Pattern Catalog | Conclusion

OF " Abstract Factory Object Creational

SEARCH

| Contents |ﬁ.|i|:|ntu Hﬂﬂdﬂ'5| Glossary | Notation | Foundation | Bibliography | Index | Pattern Map |
Intent

Also Known As
Motivation
Applicability
Structure

v Intent

Provide an interface for creating families of related or dependent objects without specifying their
S A concrete classes.
Collaborations

UL v Also Known As

Implementation

Sample Code Kit
Known Uses

LU v \Votivation

Consider a user interface toolkit that supports multiple look-and-feel standards, such as Motif and
Presentation Manager. Different look-and-feels define different appearances and behaviors for user
interface "widgets" like scroll bars, windows, and buttons. To be portable across |ook-and-feel standards,
an application should not hard-code its widgets for a particular look and feel. Instantiating look-and-feel -
specific classes of widgets throughout the application makes it hard to change the look and feel |ater.

We can solve this problem by defining an abstract WidgetFactory class that declares an interface for
creating each basic kind of widget. There's also an abstract class for each kind of widget, and concrete
subclasses implement widgets for specific look-and-feel standards. WidgetFactory's interface has an
operation that returns a new widget object for each abstract widget class. Clients call these operations to
obtain widget instances, but clients aren't aware of the concrete classes they're using. Thus clients stay
independent of the prevailing look and feel.

WidgetFactory (e | Client
CroateFeroliGan]
Craate i) | window

--—| PMWindow | |I.|nt'rf'ﬁl'indnw |---

MotifWidgetFactory [-

CregtaScroliBar(}
CraateWindow()

PMWidgetFactory | —————____ |

CreateScrallBar()
CoreateWindow|)

-——-I PMScroliBar | |Hulif5crnlll':|ar |-——

Thereis a concrete subclass of WidgetFactory for each look-and-feel standard. Each subclass implements
the operations to create the appropriate widget for the look and feel. For example, the CreateScrolIBar
operation on the MotifWidgetFactory instantiates and returns a Motif scroll bar, while the corresponding
operation on the PMWidgetFactory returns a scroll bar for Presentation Manager. Clients create widgets
solely through the WidgetFactory interface and have no knowledge of the classes that implement widgets
for aparticular look and feel. In other words, clients only have to commit to an interface defined by an
abstract class, not a particular concrete class.

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3afs.htm (1 of 8) [21/08/2002 19:06:50]

javascript:loadApplet()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3a.htm#relatedpatterns
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3a.htm#knownuses
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3a.htm#samplecode
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3a.htm#implementation
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3a.htm#consequences
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3a.htm#collaborations
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3a.htm#participants
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3a.htm#structure
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3a.htm#applicability
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3a.htm#motivation
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3a.htm#alsoknownas
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3a.htm#intent
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/helpfs.htm
javascript:build()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/patcafs.htm

Abstract Factory

A WidgetFactory aso enforces dependencies between the concrete widget classes. A Motif scroll bar
should be used with aMotif button and a Motif text editor, and that constraint is enforced automatically
as a consequence of using a MotifWidgetFactory.

v Applicability

Use the Abstract Factory pattern when
. asystem should be independent of how its products are created, composed, and represented.
. asystem should be configured with one of multiple families of products.

. afamily of related product objectsis designed to be used together, and you need to enforce this
constraint.

« you want to provide aclass library of products, and you want to reveal just their interfaces, not
their implementations.

v Structure

AbstraciFactory = Client |

CreataCroducid (]
CrasteProductE) | AbstractProductA f4—————
-{ ProductA2 | | ProductAd |-———.
i]
ConcreteFactoryl - ConcreteFactory2 [..____i '
CreateProductAl) CreateProducta]) i ;
CroataProductB) CreateProductBi) | AbstractProducts |"'—'—

v Participants

. AbstractFactory (WidgetFactory)

o declares an interface for operations that create abstract product objects.
. ConcreteFactory (MotifWidgetFactory, PMWidgetFactory)

o implements the operations to create concrete product objects.
. AbstractProduct (Window, ScrollBar)

o declares an interface for atype of product object.

. ConcreteProduct (MotifWindow, MotifScrollBar)

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3afs.htm (2 of 8) [21/08/2002 19:06:50]

Abstract Factory

o defines a product object to be created by the corresponding concrete factory.
o implements the AbstractProduct interface.
. Client

o usesonly interfaces declared by AbstractFactory and AbstractProduct classes.

v Collaborations

. Normally asingle instance of a ConcreteFactory classis created at run-time. This concrete factory
creates product objects having a particular implementation. To create different product objects,
clients should use a different concrete factory.

. AbstractFactory defers creation of product objects to its ConcreteFactory subclass.

v Consequences

The Abstract Factory pattern has the following benefits and liabilities:

1. Itisolates concrete classes. The Abstract Factory pattern helps you control the classes of objects
that an application creates. Because a factory encapsulates the responsibility and the process of
creating product objects, it isolates clients from implementation classes. Clients manipulate
instances through their abstract interfaces. Product class names are isolated in the implementation
of the concrete factory; they do not appear in client code.

2. It makes exchanging product families easy. The class of a concrete factory appears only oncein
an application—that is, where it's instantiated. This makes it easy to change the concrete factory
an application uses. It can use different product configurations ssmply by changing the concrete
factory. Because an abstract factory creates a complete family of products, the whole product
family changes at once. In our user interface example, we can switch from Motif widgets to
Presentation Manager widgets simply by switching the corresponding factory objects and
recreating the interface.

3. It promotes consistency among products. When product objectsin afamily are designed to work
together, it'simportant that an application use objects from only one family at atime.
AbstractFactory makes this easy to enforce.

4. Supporting new kinds of products is difficult. Extending abstract factories to produce new kinds of
Productsisn't easy. That's because the AbstractFactory interface fixes the set of products that can
be created. Supporting new kinds of products requires extending the factory interface, which
involves changing the AbstractFactory class and all of its subclasses. We discuss one solution to
this problem in the Implementation section.

v Implementation

Here are some useful techniques for implementing the Abstract Factory pattern.

1. Factoriesas singletons. An application typically needs only one instance of a ConcreteFactory
per product family. So it's usually best implemented as a Singleton (127).

2. Creating the products. AbstractFactory only declares an interface for creating products. It's up to

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3afs.htm (3 of 8) [21/08/2002 19:06:50]

Abstract Factory

ConcreteProduct subclasses to actually create them. The most common way to do thisisto define
afactory method (see Factory Method (107)) for each product. A concrete factory will specify its
products by overriding the factory method for each. While thisimplementation is simple, it
requires anew concrete factory subclass for each product family, even if the product families
differ only dlightly.

If many product families are possible, the concrete factory can be implemented using the
Prototype (117) pattern. The concrete factory isinitialized with a prototypical instance of each
product in the family, and it creates a new product by cloning its prototype. The Prototype-based
approach eliminates the need for a new concrete factory class for each new product family.

Here's away to implement a Prototype-based factory in Smalltalk. The concrete factory stores the
prototypes to be cloned in adictionary called par t Cat al og. The method make: retrievesthe
prototype and clones it:

make: part Nanme
N (partCatal og at: partNanme) copy

The concrete factory has a method for adding parts to the catalog.

addPart: partTenpl ate named: part Nane
part Catal og at: partName put: partTenpl ate

Prototypes are added to the factory by identifying them with a symbol:
aFactory addPart: aPrototype named: #ACMEW dget

A variation on the Prototype-based approach is possible in languages that treat classes as first-
class objects (Smalltalk and Objective C, for example). Y ou can think of aclassin these
languages as a degenerate factory that creates only one kind of product. Y ou can store classes
inside a concrete factory that create the various concrete products in variables, much like
prototypes. These classes create new instances on behalf of the concrete factory. Y ou define a
new factory by initializing an instance of a concrete factory with classes of products rather than
by subclassing. This approach takes advantage of language characteristics, whereas the pure
Prototype-based approach is language-independent.

Like the Prototype-based factory in Smalltalk just discussed, the class-based version will have a
singleinstance variable par t Cat al og, which isadictionary whose key is the name of the part.
Instead of storing prototypesto be cloned, par t Cat al og stores the classes of the products. The
method make: now looks like this:

make: part Nane
N (partCatal og at: partNane) new

. Defining extensible factories. AbstractFactory usually defines a different operation for each kind

of product it can produce. The kinds of products are encoded in the operation signatures. Adding a
new kind of product requires changing the AbstractFactory interface and all the classes that
depend onit.

A more flexible but less safe design is to add a parameter to operations that create objects. This
parameter specifies the kind of object to be created. It could be a classidentifier, an integer, a
string, or anything else that identifies the kind of product. In fact with this approach,
AbstractFactory only needs asingle "Make" operation with a parameter indicating the kind of
object to create. Thisis the technique used in the Prototype- and the class-based abstract factories
discussed earlier.

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3afs.htm (4 of 8) [21/08/2002 19:06:50]

Abstract Factory

Thisvariation is easier to use in adynamically typed language like Smalltalk than in a statically
typed language like C++. You can use it in C++ only when all objects have the same abstract base
class or when the product objects can be safely coerced to the correct type by the client that
requested them. The implementation section of Factory Method (107) shows how to implement

such parameterized operationsin C++.

But even when no coercion is needed, an inherent problem remains. All products are returned to
the client with the same abstract interface as given by the return type. The client will not be able
to differentiate or make safe assumptions about the class of a product. If clients need to perform
subclass-specific operations, they won't be accessible through the abstract interface. Although the
client could perform a downcast (e.g., with dynami ¢_cast in C++), that's not aways feasible
or safe, because the downcast can fail. Thisisthe classic trade-off for a highly flexible and
extensible interface.

v Sample Code

Well apply the Abstract Factory pattern to creating the mazes we discussed at the beginning of this
chapter.

ClassMazeFact ory can create components of mazes. It builds rooms, walls, and doors between
rooms. It might be used by a program that reads plans for mazes from afile and builds the corresponding
maze. Or it might be used by a program that builds mazes randomly. Programs that build mazes take a
MazeFact or y asan argument so that the programmer can specify the classes of rooms, walls, and
doors to construct.

cl ass MazeFactory {
publi c:
MazeFactory();

virtual Maze* MakeMaze() const
{ return new Maze; }
virtual Wall* MakeWal |l () const
{ return new Vall; }
virtual Roonmr MakeRoon{int n) const
{ return new Room(n); }
virtual Door* MakeDoor (Roont r1, Roonf r2) const
{ return new Door(r1, r2); }

H

Recall that the member function Cr eat eMaze (page 84) builds a small maze consisting of two rooms

with adoor between them. Cr eat eMaz e hard-codes the class names, making it difficult to create mazes
with different components.

Here'saversion of Cr eat eMaze that remedies that shortcoming by taking aMazeFact ory asa
parameter:

Maze* MazeGane: : Creat eMaze (MazeFactoryé& factory) {
Maze* aMaze = factory. MakeMaze();
Roont rl1 = factory. MakeRoon{1);
Roonmr r2 = factory. MakeRoon(2);
Door* aDoor = factory.MakeDoor(r1, r2);

aMaze- >AddRoom(r 1) ;
aMaze- >AddRoon(r 2) ;

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3afs.htm (5 of 8) [21/08/2002 19:06:50]

Abstract Factory

ri1->Set Side(North, factory. MakeWall ());
r1->Set Si de(East, aDoor);
r1->Set Si de(Sout h, factory. MakeWal

1());
ri1->Set Si de(\West, factory. vakeWall ());

r2->Set Side(North, factory. MakeWall ())
r2->Set Si de(East, factory. vakeWall ());
r2- >Set Si de(Sout h, factory. MakeWal | ())
r2- >Set Si de(West, abDoor);

return aMvaze;

}

We can create Enchant edMazeFact or y, afactory for enchanted mazes, by subclassing
MazeFact ory. Enchant edMazeFact or y will override different member functions and return
different subclasses of Room Wl | , etc.

cl ass Enchant edMazeFactory : public MazeFactory {
publi c:
Enchant edMazeFactory();

virtual Roomr MakeRoon{int n) const
{ return new Enchant edRoom(n, CastSpell()); }

virtual Door* MakeDoor (Roon* rl, Roont r2) const
{ return new Door Needi ngSpel |l (r1, r2); }

pr ot ect ed:
Spel | * Cast Spel | () const;

s

Now suppose we want to make a maze game in which aroom can have abomb set in it. If the bomb goes
off, it will damage the walls (at |east). We can make a subclass of Roomkeep track of whether the room
has abomb in it and whether the bomb has gone off. Wel'l also need a subclass of Wl | to keep track of
the damage done to the wall. We'll call these classes RoomWN t hABonb and BorrbedWal | .

Thelast classwe'll defineisBombedMazeFact or y, asubclass of MazeFact or y that ensureswalls
are of classBonbedWal | and rooms are of class RoomW t hABonb. BonbedMazeFact ory only
needs to override two functions:

Wal | * BonbedMazeFactory:: MakeWall () const {
return new BonbedWal | ;

}

Roont BonbedMazeFact ory: : MakeRoon(int n) const {
return new RoomW t hABonb(n);

}

To build asimple maze that can contain bombs, we smply call Cr eat eMaze with a
BonmbedMazeFact ory.

MazeGane gane;
BombedMazeFactory factory;

gane. Creat eMaze(factory);

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3afs.htm (6 of 8) [21/08/2002 19:06:50]

Abstract Factory

Cr eat eMaze can take an instance of Enchant edVazeFact or y just aswell to build enchanted
mazes.

Notice that the MazeFact or y isjust acollection of factory methods. Thisisthe most common way to
implement the Abstract Factory pattern. Also note that MazeFact or y isnot an abstract class; thus it
acts as both the AbstractFactory and the ConcreteFactory. Thisis another common implementation for
simple applications of the Abstract Factory pattern. Because the MazeFact or y isaconcrete class
consisting entirely of factory methods, it's easy to make anew MazeFact or y by making a subclass and
overriding the operations that need to change.

Cr eat eMaze used the Set Si de operation on roomsto specify their sides. If it creates rooms with a
BonbedMazeFact or y, then the maze will be made up of RoomW t hABonb objects with
BonmbedWal | sides. If RoomW t hABonb had to access a subclass-specific member of BonbedWal |,
then it would have to cast areference to itswalls from VWl | * to BonbedWal | *. This downcasting is
safe aslong as the argument isin fact aBonbedWal | , which is guaranteed to be true if walls are built
solely with aBonbedMazeFact ory.

Dynamically typed languages such as Smalltalk don't require downcasting, of course, but they might
produce run-time errors if they encounter a\V\al | where they expect a subclass of Wl | . Using Abstract
Factory to build walls helps prevent these run-time errors by ensuring that only certain kinds of walls can
be created.

Let's consider a Smalltalk version of MazeFact or y, one with asingle make operation that takes the
kind of object to make as a parameter. Moreover, the concrete factory stores the classes of the products it
creates.

First, we'll write an equivalent of Cr eat eMaze in Smalltalk:

createMaze: aFactory
| rooml roonR aDoor |

roonl := (aFactory make: #room nunber: 1.
roon? := (aFactory nake: #room) nunber: 2.
aDoor := (aFactory make: #door) from rooml to: roon®.

rooml at Side: #north put: (aFactory make: #wall).
roonil at Side: #east put: aDoor.

rooml at Side: #south put: (aFactory make: #wall).
rooml at Side: #west put: (aFactory nake: #wall).
roonR at Side: #north put: (aFactory make: #wall).
roon at Side: #east put: (aFactory nake: #wall).
roon? at Side: #south put: (aFactory make: #wall).
roon at Side: #west put: aDoor.

A Maze new addRoom rooml; addRoom roon®; yourself

Aswe discussed in the Implementation section, MazeFact or y needs only asingle instance variable
par t Cat al og to provide adictionary whose key is the class of the component. Also recall how we
implemented the make: method:

make: partNane
N (partCatal og at: partNane) new

Now we can create aMazeFact or y and useit to implement cr eat eMaze. Well create the factory
using amethod cr eat eMazeFact or y of classMazeGane.

creat eMazeFactory
N (MazeFactory new

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3afs.htm (7 of 8) [21/08/2002 19:06:50]

Abstract Factory

addPart: Wall naned: #wall;
addPart: Room naned: #room
addPart: Door naned: #door;
your sel)

A BonbedMazeFact ory or Enchant edMazeFact ory is created by associating different classes
with the keys. For example, an Enchant edMazeFact or y could be created like this:

creat eMazeFactory
A (MazeFactory new
addPart: Wall naned: #wall;
addPart: Enchant edRoom naned: #room
addPart: Door Needi ngSpel | naned: #door;
your sel f)

* Khown Uses

InterViews uses the "Kit" suffix [Lin92] to denote AbstractFactory classes. It defines WidgetKit and
DiaogKit abstract factories for generating |ook-and-feel-specific user interface objects. InterViews also
includes a LayoutKit that generates different composition objects depending on the layout desired. For
example, alayout that is conceptually horizontal may require different composition objects depending on
the document's orientation (portrait or landscape).

ET++ [WGM88] uses the Abstract Factory pattern to achieve portability across different window

systems (X Windows and SunView, for example). The WindowSystem abstract base class defines the
interface for creating objects that represent window system resources (MakeWindow, MakeFont,
MakeColor, for example). Concrete subclasses implement the interfaces for a specific window system.
At run-time, ET++ creates an instance of a concrete WindowSystem subclass that creates concrete
system resource objects.

v Related Patterns

AbstractFactory classes are often implemented with factory methods (Factory Method (107)), but they
can also be implemented using Prototype (117).

A concrete factory is often asingleton (Singleton (127)).

F Y
» Builder

4 Creational Patterns

Abstract Factory » Adapter » Bridge » Builder » Chain of Responsibility » Command » Composite »
D ator *+ Facads = Factory Method = Flyweight = Interpreter = lterator = Mediator = Memento »
Observer * Prototype + Proxy + Singleton + State « Strategy + Template Method » Visitor

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3afs.htm (8 of 8) [21/08/2002 19:06:50]

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chapfs.htm

Builder

G) B _I d Case Study | Pattern Catalog | Conclusion
erack ullaer Object Creational

| Contents |Gui|:|t:tﬂ- Hnﬂdu5| Glossary | Notation | Foundation | Bibliography | Index | Pattern Map |
Intent
Motivation
Applicability
Structure

Participants Separate the construction of acomplex object from its representation so that the same construction process can
LA create different representations.
Consequences

¥ Intent

LUl v Motivation
Sample Code

LML A reader for the RTF (Rich Text Format) document exchange format should be able to convert RTF to many text
Related Patterns formats. The reader might convert RTF documentsinto plain ASCII text or into atext widget that can be edited
interactively. The problem, however, is that the number of possible conversionsis open-ended. So it should be
easy to add a new conversion without modifying the reader.

A solution isto configure the RTFReader class with a TextConverter abject that converts RTF to another textual
representation. Asthe RTFReader parses the RTF document, it uses the TextConverter to perform the conversion.
Whenever the RTFReader recognizes an RTF token (either plain text or an RTF control word), it issues a request
to the TextConverter to convert the token. TextConverter objects are responsible both for performing the data
conversion and for representing the token in a particular format.

Subclasses of TextConverter specialize in different conversions and formats. For example, an ASCIIConverter
ignores requests to convert anything except plain text. A TeX Converter, on the other hand, will implement
operations for all requestsin order to produce a TeX representation that captures al the stylistic information in
the text. A TextWidgetConverter will produce acomplex user interface object that lets the user see and edit the
text.

ATFReader - TextC:
er
ParseATF() ? [ConvertCharacierjichar)
! CanvartfontChangs! Fomt)
i CanvertParagraphy)
I
rdﬂ-e_{t; =4 1ha{n-a.xl1-:ikan}{ ™ }\
ewilch L Typs
CHAR: | | l
Fﬂbr-:l;_ill_dat—:-ﬂmrlﬂharamm{tﬁar] ASClConverter TeXConverter TextWidgetConverier
b e -=ConvertFamChange(t Font) ComverCharacter(char) ComvenCharacterichar) ComverCharacter(char)
bullﬂef-:(:mnenparagiwhi] GatASCHIText) ConverfFoniChangs(Font) CorverFontChangsiFont)
ConvenPaagraph() CorvenParagraphi)
' GetTaXTaxt) GetTaxtWidgst()

™ ASClHText

L TeXText

-a TextWidget

Each kind of converter class takes the mechanism for creating and assembling a complex object and puts it
behind an abstract interface. The converter is separate from the reader, which is responsible for parsing an RTF
document.

The Builder pattern captures all these relationships. Each converter classis called abuilder in the pattern, and the
reader is called the director. Applied to this example, the Builder pattern separates the algorithm for interpreting
atextual format (that is, the parser for RTF documents) from how a converted format gets created and
represented. This lets us reuse the RTFReader's parsing algorithm to create different text representations from
RTF documents—just configure the RTFReader with different subclasses of TextConverter.

v Applicability

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3bfs.htm (1 of 8) [21/08/2002 19:07:13]

javascript:loadApplet()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3b.htm#relatedpatterns
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3b.htm#knownuses
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3b.htm#samplecode
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3b.htm#implementation
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3b.htm#consequences
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3b.htm#collaborations
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3b.htm#participants
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3b.htm#structure
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3b.htm#applicability
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3b.htm#motivation
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3b.htm#intent
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/helpfs.htm
javascript:build()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/patcafs.htm

Builder

Use the Builder pattern when

. the agorithm for creating a complex object should be independent of the parts that make up the object and
how they're assembled.

. the construction process must alow different representations for the object that's constructed.

v Structure

Director {}“““”” Builder

Construct} BuiidParif}

-— -

fior all objects in structura {)
builder—=BuildPart{}

ConcreteBuilder [--—----- . Product

BuildPari{}
GetResult)

v Participants

. Builder (TextConverter)
o gpecifies an abstract interface for creating parts of a Product object.
. ConcreteBuilder (ASCIIConverter, TeXConverter, TextWidgetConverter)
o constructs and assembles parts of the product by implementing the Builder interface.
o defines and keeps track of the representation it creates.
o provides an interface for retrieving the product (e.g., GEtASCII Text, GetTextWidget).
. Director (RTFReader)
o constructs an object using the Builder interface.
. Product (ASCIIText, TeX Text, TextWidget)

o represents the complex object under construction. ConcreteBuilder builds the product's internal
representation and defines the process by which it's assembl ed.

o includes classes that define the constituent parts, including interfaces for assembling the parts into
the final result.

* Collaborations

. Theclient creates the Director object and configures it with the desired Builder object.
. Director notifies the builder whenever a part of the product should be built.

. Builder handles requests from the director and adds parts to the product.

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3bfs.htm (2 of 8) [21/08/2002 19:07:13]

Builder

. Theclient retrieves the product from the builder.

The following interaction diagram illustrates how Builder and Director cooperate with a client.

aClient aDiraector aConcreteBuilder
1 ' I

new ConcrateBuikder

Construct() -_I BuildParta[) -
BuildPartB(} -I
BuildPartC{) ._I

GetResult() T .Ej
o

v Consequences

Here are key consequences of the Builder pattern:

1. Itletsyou vary a product'sinternal representation. The Builder object provides the director with an
abstract interface for constructing the product. The interface lets the builder hide the representation and
internal structure of the product. It also hides how the product gets assembled. Because the product is
constructed through an abstract interface, all you have to do to change the product's internal representation
is define anew kind of builder.

2. Itisolates code for construction and representation. The Builder pattern improves modularity by
encapsulating the way a complex object is constructed and represented. Clients needn't know anything
about the classes that define the product's internal structure; such classes don't appear in Builder's
interface.

Each ConcreteBuilder contains all the code to create and assemble a particular kind of product. The code
iswritten once; then different Directors can reuse it to build Product variants from the same set of parts. In
the earlier RTF example, we could define areader for aformat other than RTF, say, an SGML Reader, and
use the same TextConvertersto generate ASClI Text, TeXText, and TextWidget renditions of SGML
documents.

3. It givesyou finer control over the construction process. Unlike creational patterns that construct products
in one shot, the Builder pattern constructs the product step by step under the director's control. Only when
the product is finished does the director retrieve it from the builder. Hence the Builder interface reflects
the process of constructing the product more than other creational patterns. This gives you finer control
over the construction process and consequently the interna structure of the resulting product.

v Implementation

Typicaly there's an abstract Builder class that defines an operation for each component that a director may ask it
to create. The operations do nothing by default. A ConcreteBuilder class overrides operations for componentsit's
interested in creating.

Here are other implementation issues to consider:

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3bfs.htm (3 of 8) [21/08/2002 19:07:13]

Builder

1. Assembly and construction interface. Builders construct their products in step-by-step fashion. Therefore
the Builder class interface must be general enough to alow the construction of products for al kinds of
concrete builders.

A key design issue concerns the model for the construction and assembly process. A model where the
results of construction regquests are simply appended to the product is usually sufficient. In the RTF
example, the builder converts and appends the next token to the text it has converted so far.

But sometimes you might need access to parts of the product constructed earlier. In the Maze example we
present in the Sample Code, the MazeBuilder interface lets you add a door between existing rooms. Tree
structures such as parse trees that are built bottom-up are another example. In that case, the builder would
return child nodes to the director, which then would pass them back to the builder to build the parent
nodes.

2. Why no abstract class for products? In the common case, the products produced by the concrete builders
differ so greatly in their representation that thereislittle to gain from giving different products a common
parent class. In the RTF example, the ASCII Text and the TextWidget objects are unlikely to have a
common interface, nor do they need one. Because the client usually configures the director with the proper
concrete builder, the client isin a position to know which concrete subclass of Builder isin use and can
handle its products accordingly.

3. Empty methods as default in Builder. In C++, the build methods are intentionally not declared pure virtual
member functions. They're defined as empty methods instead, |etting clients override only the operations
they're interested in.

v Sample Code

WE'l define avariant of the Cr eat eMaze member function (page 84) that takes a builder of class
MazeBui | der asan argument.

The MazeBui | der class defines the following interface for building mazes.

cl ass MazeBuil der {
publi c:
virtual void Buildvaze() { }
virtual void Buil dRoonm(int room { }
virtual void BuildDoor(int roonFrom int roomlo) { }

virtual Maze* GetMaze() { return O; }
pr ot ect ed:
MazeBui | der () ;

H

Thisinterface can create three things: (1) the maze, (2) rooms with a particular room number, and (3) doors
between numbered rooms. The Get Maze operation returns the maze to the client. Subclasses of MazeBui | der
will override this operation to return the maze that they build.

All the maze-building operations of MazeBui | der do nothing by default. They're not declared pure virtual to
let derived classes override only those methods in which they're interested.

Giventhe MazeBui | der interface, we can change the Cr eat eMaze member function to take this builder as a
parameter.

Maze* MazeGane:: Creat eMaze (MazeBuil der& buil der) {
bui | der. Bui | dVaze();

bui | der . Bui | dRoon(1) ;
bui | der . Bui | dRoon(2) ;

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3bfs.htm (4 of 8) [21/08/2002 19:07:13]

Builder

bui | der. Bui | dDoor (1, 2);

return buil der. Get Maze();
}

Comparethisversion of Cr eat eMaze with the original. Notice how the builder hides the internal representation
of the Maze—that is, the classes that define rooms, doors, and walls—and how these parts are assembled to
complete the final maze. Someone might guess that there are classes for representing rooms and doors, but there
isno hint of one for walls. This makesiit easier to change the way amaze is represented, since none of the clients
of MazeBui | der hasto be changed.

Like the other creational patterns, the Builder pattern encapsulates how objects get created, in this case through
the interface defined by MazeBui | der . That means we can reuse MazeBui | der to build different kinds of
mazes. The Cr eat eConpl exMaze operation gives an example:

Maze* MazeGane: : Creat eConpl exMaze (MazeBuil der & builder) {
bui | der . Bui | dRoon(1) ;
...
bui | der . Bui | dRoon(1001) ;

return buil der. Get Maze();
}

Notethat MazeBui | der does not create mazes itself; its main purpose is just to define an interface for creating
mazes. It defines empty implementations primarily for convenience. Subclasses of MazeBui | der do the actual
work.

The subclass St andar dMazeBui | der isanimplementation that builds simple mazes. It keeps track of the
maze it's building in the variable _cur r ent Maze.

class StandardMazeBuil der : public MazeBuil der {
publi c:
St andar dMazeBui | der () ;

virtual void Buildvaze();
virtual void Buil dRoomn(int);
virtual void BuildDoor(int, int);

virtual Maze* Get Maze();

private:
Di rection ConmonWal | (Roont, Roont);
Maze* _current Maze;

b
ComonWal | isautility operation that determines the direction of the common wall between two rooms.
The St andar dMazeBui | der constructor smply initializes _curr ent Maze.

St andar dMazeBui | der: : St andar dMazeBui | der () {

_current Maze = 0;

}

Bui | dMaze instantiates a Maz e that other operations will assemble and eventually return to the client (with
Cet Maze).

voi d St andardMazeBui | der:: Buil dvaze () {
_current Maze = new Maze;
}

Maze* StandardMazeBuil der:: Get Maze () {

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3bfs.htm (5 of 8) [21/08/2002 19:07:13]

Builder

return _current Maze;

}

The Bui | dRoomoperation creates aroom and builds the walls around it:

voi d St andar dvazeBui | der: : Bui | dRoom (int n) {
if (!_currentMaze->RoomNo(n)) {
Roont room = new Room(n);
_current Maze- >AddRoon(room ;

room >Set Si de(North, new Wl l)
)

I
room >Set Si de(Sout h, new Wal |
room >Set Si de(East, new VWl |)
room >Set Si de(West, new VWl l)

}

To build adoor between two rooms, St andar dvVazeBui | der looks up both roomsin the maze and finds their
adjoining wall:

voi d St andardMazeBui |l der: : BuildDoor (int nl, int n2) {
Roont r1 = _current Maze- >RoomNo(nl);
Roont r2 = _current Maze- >RoomNo(n2) ;
Door* d = new Door(rl, r2);

ri1->Set Si de(CommonVal | (r1,r2), d);
r2->Set Si de(CormonWVal | (r2,r1), d);
}

Clients can now use Cr eat eMaze in conjunction with St andar dMazeBui | der to create amaze:

Maze* naze;
MazeGane gane;
St andar dMazeBui | der bui | der;

gane. Creat eMaze(bui | der);
maze = buil der. Get Maze();

We could have put al the St andar dMazeBui | der operationsin Maze and let each Maze build itself. But
making Maze smaller makesit easier to understand and modify, and St andar dMazeBui | der iseasy to
separate from Maze. Most importantly, separating the two lets you have avariety of MazeBui | der s, each
using different classes for rooms, walls, and doors.

A more exotic MazeBui | der isCount i ngMazeBui | der . Thisbuilder doesn't create amaze at all; it just
counts the different kinds of components that would have been created.

cl ass CountingMazeBuil der : public MazeBuil der {
publi c:
Counti ngMazeBui | der () ;

virtual void BuildMvaze();

virtual void BuildRoon{int);

virtual void BuildDoor(int, int);
virtual void Addwall (int, Direction);

void GetCounts(int& int& const;

private:
int _doors;
int _roons;
s

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3bfs.htm (6 of 8) [21/08/2002 19:07:13]

Builder

The constructor initializes the counters, and the overridden MazeBui | der operationsincrement them
accordingly.

Count i ngMazeBui | der: : Counti ngMazeBui | der () {

_roons = _doors = 0;

}

voi d Counti ngMazeBui l der: : Buil dRoom (int) {
_roons++;

}

voi d Counti ngMazeBui |l der:: Buil dDoor (int, int) {
_door s++;

}

voi d Counti ngMazeBui |l der:: Get Counts (
int& rooms, inté& doors

) const {
roons = _rOoons;
doors = _doors;
}

Here's how aclient might useaCount i ngMazeBui | der :

int roons, doors;
MazeGane gane;
Counti ngMazeBui | der bui | der;

gamne. Cr eat eMaze(bui | der);
bui | der. Get Count s(roons, doors);

cout << "The nmze has "
<< roons << " roons and "
<< doors << " doors" << endl;

* Known Uses

The RTF converter application is from ET++ [WGM88]. Itstext building block uses a builder to process text
stored in the RTF format.

Builder is a common pattern in Smalltalk-80 [Par90]:

. The Parser classin the compiler subsystem is a Director that takes a ProgramNodeBuilder object as an
argument. A Parser object notifies its ProgramNodeBuilder object each time it recognizes a syntactic
construct. When the parser is done, it asks the builder for the parse tree it built and returnsit to the client.

. ClassBuilder is abuilder that Classes use to create subclasses for themselves. In this case a Class is both
the Director and the Product.

. ByteCodeStream is a builder that creates a compiled method as a byte array. ByteCodeStreamis a
nonstandard use of the Builder pattern, because the complex object it buildsis encoded as a byte array, not
asanormal Smalltalk object. But the interface to ByteCodeStream is typical of a builder, and it would be
easy to replace ByteCodeStream with a different class that represented programs as a composite object.

The Service Configurator framework from the Adaptive Communications Environment uses a builder to
construct network service components that are linked into a server at run-time [SS94]. The components are
described with a configuration language that's parsed by an LALR(1) parser. The semantic actions of the parser
perform operations on the builder that add information to the service component. In this case, the parser isthe

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3bfs.htm (7 of 8) [21/08/2002 19:07:13]

Builder

Director.

v Related Patterns

Abstract Factory (87) issimilar to Builder in that it too may construct complex objects. The primary differenceis
that the Builder pattern focuses on constructing a complex object step by step. Abstract Factory's emphasisison
families of product objects (either simple or complex). Builder returns the product as afinal step, but as far asthe
Abstract Factory pattern is concerned, the product gets returned immediately.

A Composite (163) is what the builder often builds.

a

p Factory Method
4 Abstract Factory

Abstract Factory = Adapter « Bridge = Builder = Chain of Hesponsibility = Command » Composite
D ator = Facade * Factory Method = Flyweight + Interpreter = [terator = Mediator = Memento =

Observer » Prototype + Proxy * Singleton = Siate » Strategy + Template Method « Visitor

o

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3bfs.htm (8 of 8) [21/08/2002 19:07:13]

Factory Method

©

SEARGH

Intent

Also Known As
Motivation
Applicability
Structure
Participants
Collaborations
Consequences
Implementation
Sample Code
Known Uses
Related Patterns

Caze Study

Pattern Catalog | Conclusion

Factory Method Class Creational

| Contents |Guidctuﬁnadu5| Glossary | Notation | Foundation | Bibliography | Index | Pattern Map |

¥ Intent

Define an interface for creating an object, but let subclasses decide which class to instantiate. Factory Method lets a
class defer instantiation to subclasses.

v Also Known As

Virtua Constructor

* Motivation

Frameworks use abstract classes to define and maintain relationships between objects. A framework is often
responsible for creating these objects as well.

Consider aframework for applications that can present multiple documents to the user. Two key abstractionsin this
framework are the classes Application and Document. Both classes are abstract, and clients have to subclass them to
realize their application-specific implementations. To create a drawing application, for example, we define the
classes DrawingA pplication and DrawingDocument. The Application classis responsible for managing Documents
and will create them as required—when the user selects Open or New from a menu, for example.

Because the particular Document subclass to instantiate is application-specific, the Application class can't predict
the subclass of Document to instantiate—the Application class only knows when a new document should be created,
not what kind of Document to create. This creates adilemma: The framework must instantiate classes, but it only
knows about abstract classes, which it cannot instantiate.

The Factory Method pattern offers a solution. It encapsul ates the knowledge of which Document subclass to create
and moves this knowledge out of the framework.

docs
m—o Application
Openy) CreateDocument() D t doc = CreateDo i
Closa() NewDocumentl) o |- ____ dg:}:;gﬁmmuﬁ_ reateDocument();
Savel(} OpenbDocument(} doc—=0pen();
Revert()
MyDocument [—---—-—- - MyApplication
CreateDocument(y @-—---—----1 refurm new MyDocument ﬂ

Application subclasses redefine an abstract CreateDocument operation on Application to return the appropriate
Document subclass. Once an Application subclass isinstantiated, it can then instantiate application-specific
Documents without knowing their class. We call CreateDocument afactory method because it's responsible for
"manufacturing” an object.

v Applicability

Use the Factory Method pattern when

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3cfs.htm (1 of 8) [21/08/2002 19:08:18]

javascript:loadApplet()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3c.htm#relatedpatterns
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3c.htm#knownuses
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3c.htm#samplecode
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3c.htm#implementation
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3c.htm#consequences
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3c.htm#collaborations
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3c.htm#participants
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3c.htm#structure
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3c.htm#applicability
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3c.htm#motivation
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3c.htm#alsoknownas
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3c.htm#intent
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/helpfs.htm
javascript:build()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/patcafs.htm

Factory Method

. aclass can't anticipate the class of objects it must create.
. aclasswantsits subclasses to specify the objectsit creates.

. Classes delegate responsibility to one of several helper subclasses, and you want to localize the knowledge of
which helper subclassis the delegate.

v Structure

Creator

FactorngMeathod

Anﬂpa::atiunn ! e | - - ____ | product = FactoryMethod() 1
ConecreteProduct ™~ ————----1 ConcreleCreator

FactoryMethod(} O-fF------=1 retum new ConcreterductH

¥ Participants

. Product (Document)

o defines the interface of objects the factory method creates.
. ConcreteProduct (MyDocument)

o implements the Product interface.
. Creator (Application)

o declares the factory method, which returns an object of type Product. Creator may also define a
default implementation of the factory method that returns a default ConcreteProduct object.

o may call the factory method to create a Product object.
. ConcreteCreator (MyApplication)

o overrides the factory method to return an instance of a ConcreteProduct.

v Collaborations

. Creator relies on its subclasses to define the factory method so that it returns an instance of the appropriate
ConcreteProduct.

v Consequences

Factory methods eliminate the need to bind application-specific classes into your code. The code only deals with the
Product interface; therefore it can work with any user-defined ConcreteProduct classes.

A potential disadvantage of factory methods is that clients might have to subclass the Creator class just to create a
particular ConcreteProduct object. Subclassing is fine when the client has to subclass the Creator class anyway, but
otherwise the client now must deal with another point of evolution.

Here are two additional consequences of the Factory Method pattern:

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3cfs.htm (2 of 8) [21/08/2002 19:08:18]

Factory Method

1. Provides hooks for subclasses. Creating objects inside a class with afactory method is aways more flexible
than creating an object directly. Factory Method gives subclasses a hook for providing an extended version of
an object.

In the Document example, the Document class could define a factory method called CreateFileDialog that
creates a default file dialog object for opening an existing document. A Document subclass can define an
application-specific file dialog by overriding this factory method. In this case the factory method is not
abstract but provides a reasonable default implementation.

2. Connects parallel class hierarchies. In the examples we've considered so far, the factory method is only
called by Creators. But this doesn't have to be the case; clients can find factory methods useful, especialy in
the case of parallel class hierarchies.

Parallel class hierarchies result when a class delegates some of its responsibilities to a separate class.
Consider graphical figuresthat can be manipulated interactively; that is, they can be stretched, moved, or
rotated using the mouse. |mplementing such interactionsisn't aways easy. It often requires storing and
updating information that records the state of the manipulation at a given time. This state is needed only
during manipulation; therefore it needn't be kept in the figure object. Moreover, different figures behave
differently when the user manipulates them. For example, stretching aline figure might have the effect of
moving an endpoint, whereas stretching atext figure may change its line spacing.

With these constraints, it's better to use a separate Manipulator object that implements the interaction and
keeps track of any manipulation-specific state that's needed. Different figures will use different Manipulator
subclasses to handle particular interactions. The resulting Manipulator class hierarchy parallels (at least
partially) the Figure class hierarchy:

rie o
Craateldanipulaton) ChonnCiicky
Dragyf)
/L LipClicky)

I I o I I o
LineFigure TextFigure LineManipulator TextManipulator
Createblanpuiaton]) Creatabtanpulaton) DownClicki) DowniCHck)

Diraugi Dragi)
- el UpClick(} UpClick()
1 1

The Figure class provides a CreateManipulator factory method that lets clients create a Figure's
corresponding Manipulator. Figure subclasses override this method to return an instance of the Manipulator
subclass that's right for them. Alternatively, the Figure class may implement CreateManipulator to return a
default Manipulator instance, and Figure subclasses may simply inherit that default. The Figure classes that
do so need no corresponding Manipulator subclass—hence the hierarchies are only partially parallel.

Notice how the factory method defines the connection between the two class hierarchies. It localizes
knowledge of which classes belong together.

v Implementation

Consider the following issues when applying the Factory Method pattern:

1. Two major varieties. The two main variations of the Factory Method pattern are (1) the case when the
Creator classis an abstract class and does not provide an implementation for the factory method it declares,
and (2) the case when the Creator is a concrete class and provides a default implementation for the factory
method. It's also possible to have an abstract class that defines a default implementation, but thisisless

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3cfs.htm (3 of 8) [21/08/2002 19:08:18]

Factory Method

common.

The first case requires subclasses to define an implementation, because there's no reasonable default. It gets
around the dilemma of having to instantiate unforeseeable classes. In the second case, the concrete Creator
uses the factory method primarily for flexibility. It's following arule that says, "Create objects in a separate
operation so that subclasses can override the way they're created.” This rule ensures that designers of
subclasses can change the class of objects their parent class instantiates if necessary.

2. Parameterized factory methods. Another variation on the pattern lets the factory method create multiple kinds
of products. The factory method takes a parameter that identifies the kind of object to create. All objectsthe
factory method creates will share the Product interface. In the Document example, Application might support
different kinds of Documents. Y ou pass CreateDocument an extra parameter to specify the kind of document
to create.

The Unidraw graphical editing framework [VL90] uses this approach for reconstructing objects saved on
disk. Unidraw definesa Cr eat or class with afactory method Cr eat e that takes aclassidentifier asan
argument. The class identifier specifies the class to instantiate. When Unidraw saves an object to disk, it
writes out the class identifier first and then its instance variables. When it reconstructs the object from disk, it
reads the classidentifier first.

Oncetheclassidentifier isread, the framework calls Cr eat e, passing the identifier as the parameter.

Cr eat e looks up the constructor for the corresponding class and uses it to instantiate the object. Last,

Cr eat e calsthe object's Read operation, which reads the remaining information on the disk and initializes
the object's instance variables.

A parameterized factory method has the following general form, where MyPr oduct and Your Pr oduct
are subclasses of Pr oduct :

class Creator {
publi c:
virtual Product* Create(Productld);

H

Product* Creator::Create (Productld id) {
if (id = MNE) return new MyProduct;
if (id == YOURS) return new Your Product;
/1l repeat for renmining products...

return O;

}

Overriding a parameterized factory method lets you easily and selectively extend or change the products that
a Creator produces. Y ou can introduce new identifiers for new kinds of products, or you can associate
existing identifiers with different products.

For example, asubclass MyCr eat or could swap MyProduct and Y ourProduct and support a new
Thei r Product subclass:

Product* MyCreator::Create (Productld id) {
if (id == YOURS) return new MyProduct;
if (id == MNE) return new Your Product;

/1 N.B.: switched YOURS and M NE

if (id == THEIRS) return new Thei rProduct;

return Creator::Create(id); // called if all others fail

}

Notice that the last thing this operation doesis call Cr eat e on the parent class. That's because
MyCr eat or : : Cr eat e handlesonly YOURS, M NE, and THEI RS differently than the parent class. It isn't
interested in other classes. Hence My Cr eat or extends the kinds of products created, and it defers

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3cfs.htm (4 of 8) [21/08/2002 19:08:18]

Factory Method

responsibility for creating all but afew productsto its parent.

3. Language-specific variants and issues. Different languages lend themselves to other interesting variations
and caveats.

Smalltalk programs often use a method that returns the class of the object to be instantiated. A Creator
factory method can use this value to create a product, and a ConcreteCreator may store or even compute this
value. The result is an even later binding for the type of ConcreteProduct to be instantiated.

A Smalltalk version of the Document example can defineadocunent Cl ass method on Appl i cati on.
Thedocunent G ass method returns the proper Docurnrent class for instantiating documents. The
implementation of docunent Cl ass in MyAppl i cat i on returnsthe MyDocunent class. Thusin class
Appl i cati on we have

cli ent Met hod
docunent := self docunentd ass new.

docunent d ass
sel f subcl assResponsibility

InclassMyAppl i cat i on we have

docunent Cl ass
N MyDocunent

which returns the class MyDocument to be instantiated to Appl i cati on.

An even more flexible approach akin to parameterized factory methods is to store the class to be created as a
classvariable of Appl i cat i on. That way you don't have to subclass Appl i cat i on to vary the product.

Factory methodsin C++ are always virtual functions and are often pure virtual. Just be careful not to call
factory methods in the Creator's constructor—the factory method in the ConcreteCreator won't be available
yet.

Y ou can avoid this by being careful to access products solely through accessor operations that create the
product on demand. Instead of creating the concrete product in the constructor, the constructor merely
initializes it to 0. The accessor returns the product. But first it checks to make sure the product exists, and if it
doesn't, the accessor createsit. This technique is sometimes called lazy initialization. The following code
shows atypical implementation:

class Creator {

publi c:

Product * Get Product () ;
pr ot ect ed:

virtual Product* CreateProduct();
privat e:

Product* _product;

s

Product* Creator:: GetProduct () {
if (_product == 0) {
_product = CreateProduct();
}

return _product;

}

4. Using templates to avoid subclassing. As we've mentioned, another potential problem with factory methods
isthat they might force you to subclass just to create the appropriate Product objects. Another way to get
around thisin C++ isto provide atemplate subclass of Creator that's parameterized by the Product class:

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3cfs.htm (5 of 8) [21/08/2002 19:08:18]

Factory Method

class Creator {
publi c:
virtual Product* CreateProduct() = 0;

s

tenpl ate <cl ass TheProduct >
cl ass StandardCreator: public Creator {
publi c:

virtual Product* CreateProduct();

Hs

tenpl ate <cl ass TheProduct >
Product * St andar dCreat or <ThePr oduct >: : Creat eProduct () {
return new TheProduct;

}

With this template, the client supplies just the product class—no subclassing of Creator is required.

cl ass MyProduct : public Product {

publi c:
MyPr oduct () ;
1.,

b

St andar dCr eat or <MyPr oduct > nyCr eat or;

5. Naming conventions. It's good practice to use naming conventions that make it clear you're using factory
methods. For example, the MacApp Macintosh application framework [App89] always declares the abstract
operation that defines the factory method asCl ass* DoMakeC ass(), whereC ass isthe Product
class.

v Sample Code

The function Cr eat eMaze (page 84) builds and returns a maze. One problem with this function isthat it hard-

codes the classes of maze, rooms, doors, and walls. Well introduce factory methods to let subclasses choose these
components.

First we'll define factory methodsin MazeGane for creating the maze, room, wall, and door objects:

cl ass MazeGne {
publi c:
Maze* CreateMaze();

/1 factory nethods:

virtual Maze* MakeMaze() const
{ return new Maze; }
virtual Roont MakeRoon(int n) const
{ return new Room(n); }
virtual wall* MakeWall () const
{ return new Vall; }
virtual Door* MakeDoor (Roont rl1, Roont r2) const
{ return new Door(rl, r2); }

b

Each factory method returns a maze component of a given type. MazeGane provides default implementations that
return the simplest kinds of maze, rooms, walls, and doors.

Now we can rewrite Cr eat eMaze to use these factory methods:

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3cfs.htm (6 of 8) [21/08/2002 19:08:18]

Factory Method

Maze* MazeGane: : CreateMaze () {
Maze* aMaze = MakeMaze();

Roont r1 MakeRoom(1) ;
Roont r2 MakeRoom(2) ;
Door* theDoor = MakeDoor(rl, r2);

aMaze- >AddRoon(r 1) ;
aMaze- >AddRoon(r 2) ;

ri1->Set Si de(North, MakeVWall ());
r1->Set Si de(East, theDoor);

r1- >Set Si de(Sout h, Makewall ());
ril->Set Si de(West, MakeVall());

r2->Set Si de(North, MakeWall ())
r2- >Set Si de(East, MakeWall ());
r 2- >Set Si de(Sout h, MakeWall ())
r 2- >Set Si de(West, theDoor);

return aMaze;

}

Different games can subclass Maz e Gane to specialize parts of the maze. Maz e Garre subclasses can redefine some
or al of the factory methods to specify variations in products. For example, aBonbedMazeGane can redefine the
Roomand Wal | products to return the bombed varieties:

cl ass BonbedMazeGane : public MazeGane {
publi c:
BonbedMazeGane() ;

virtual wall* MakeWall () const
{ return new BonmbedWall; }

vi rtual Roont MakeRoon{int n) const
{ return new RoomNt hABonb(n); }

1
An Enchant edMazeGane variant might be defined like this:

cl ass Enchant edMazeGane : public MazeGane {
publi c:
Enchant edMazeGane() ;

virtual Roont MakeRoon(int n) const
{ return new Enchant edRoon{n, CastSpell()); }

virtual Door* MakeDoor (Roont rl, Roont r2) const
{ return new Door Needi ngSpel | (r1, r2); }
pr ot ect ed:
Spel | * Cast Spel | () const;

}s
* Known Uses

Factory methods pervade toolkits and frameworks. The preceding document example isatypical usein MacApp
and ET++ [WGM88]. The manipulator exampleis from Unidraw.

Class View in the Smalltalk-80 Model/View/Controller framework has a method defaultController that creates a
controller, and this might appear to be a factory method [Par90]. But subclasses of View specify the class of their
default controller by defining defaultControllerClass, which returns the class from which defaultController creates

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3cfs.htm (7 of 8) [21/08/2002 19:08:18]

Factory Method

instances. So defaultControllerClassis the real factory method, that is, the method that subclasses should override.

A more esoteric example in Smalltalk-80 is the factory method parserClass defined by Behavior (a superclass of al
objects representing classes). This enables a class to use a customized parser for its source code. For example, a
client can define a class SQL Parser to analyze the source code of a class with embedded SQL statements. The
Behavior class implements parserClass to return the standard Smalltalk Parser class. A class that includes embedded
SQL statements overrides this method (as a class method) and returns the SQL Parser class.

The Orbix ORB system from IONA Technologies [|ON94] uses Factory Method to generate an appropriate type of
proxy (see Proxy (207)) when an object requests a reference to aremote object. Factory Method makes it easy to
replace the default proxy with one that uses client-side caching, for example.

v Related Patterns

Abstract Factory (87) is often implemented with factory methods. The Motivation example in the Abstract Factory
pattern illustrates Factory Method as well.

Factory methods are usually called within Template Methods (325). In the document example above, NewDocument
is atemplate method.

Prototypes (117) don't require subclassing Creator. However, they often require an Initialize operation on the
Product class. Creator uses Initialize to initialize the object. Factory Method doesn't require such an operation.

Y

p Prototype
4 Builder

Apstract Factory + Adapter = Bridge = Builder = Chain of Responsibility = Command + Composite =
D or * Facade * Factory Method = Flyweight = Interpreter = lterator = Mediator =+ Memento *
Observer * Prototype + Proxy = Singleton = State « Strategy + Template Method + Visitor

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3cfs.htm (8 of 8) [21/08/2002 19:08:18]

Prototype

©

SEARCGH

Intent
Motivation
Applicability
Structure
Participants
Collaborations
Consequences
Implementation
Sample Code
Known Uses
Related Patterns

Case Study | Pattern Catalag | Conclusion

Prototype Object Creational

| Contents |Gui|:|ntu-ﬂnﬂdu5| Glossary | Notation | Foundation | Bibliography | Index | Pattern Map |

¥ Intent

Specify the kinds of objects to create using a prototypical instance, and create new objects by copying this prototype.

v Motivation

Y ou could build an editor for music scores by customizing a general framework for graphica editors and adding
new objects that represent notes, rests, and staves. The editor framework may have a palette of tools for adding these
music objects to the score. The palette would also include tools for selecting, moving, and otherwise manipulating
music objects. Users will click on the quarter-note tool and use it to add quarter notes to the score. Or they can use
the move tool to move anote up or down on the staff, thereby changing its pitch.

L et's assume the framework provides an abstract Graphic class for graphical components, like notes and staves.
Moreover, it'll provide an abstract Tool class for defining tools like those in the palette. The framework aso
predefines a GraphicTool subclass for tools that create instances of graphical objects and add them to the document.

But GraphicTool presents a problem to the framework designer. The classes for notes and staves are specific to our
application, but the GraphicTool class belongs to the framework. GraphicTool doesn't know how to create instances
of our music classes to add to the score. We could subclass GraphicTool for each kind of music object, but that
would produce lots of subclassesthat differ only in the kind of music object they instantiate. We know object
composition is a flexible alternative to subclassing. The question is, how can the framework use it to parameterize
instances of GraphicTool by the class of Graphic they're supposed to create?

The solution liesin making GraphicTool create a new Graphic by copying or "cloning" an instance of a Graphic
subclass. We call thisinstance a prototype. GraphicTool is parameterized by the prototype it should clone and add
to the document. If all Graphic subclasses support a Clone operation, then the GraphicTool can clone any kind of
Graphic.

So in our music editor, each tool for creating a music object is an instance of GraphicTool that'sinitialized with a
different prototype. Each GraphicTool instance will produce a music object by cloning its prototype and adding the
clone to the score.

Tool B Graphic
Manipuiater) DrawiPasition)
/K Clonaft
RotateTool GraphicToal [st MasicalNote
hanipulzte() Manipulaie() o Draw(Position)
i Clanel))\ _____
; | |
p = prolotype-=Clons() i WholeNote Haif
) DrrawiPosition) Craw(Position)
while (User drags mousa)
p—:me{neﬂr pnsirinnj{ Clone() "-Ir' Clone() ?
insert pinto drawing i i
return copy of self return copy of self

We can use the Prototype pattern to reduce the number of classes even further. We have separate classes for whole

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3dfs.htm (1 of 8) [21/08/2002 19:08:51]

javascript:loadApplet()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3d.htm#relatedpatterns
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3d.htm#knownuses
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3d.htm#samplecode
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3d.htm#implementation
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3d.htm#consequences
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3d.htm#collaborations
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3d.htm#participants
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3d.htm#structure
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3d.htm#applicability
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3d.htm#motivation
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3d.htm#intent
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/helpfs.htm
javascript:build()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/patcafs.htm

Prototype

notes and half notes, but that's probably unnecessary. Instead they could be instances of the same classiinitialized
with different bitmaps and durations. A tool for creating whole notes becomes just a GraphicTool whose prototype is
aMusicalNote initialized to be awhole note. This can reduce the number of classesin the system dramatically. It
also makesit easier to add a new kind of note to the music editor.

v Applicability

Use the Prototype pattern when a system should be independent of how its products are created, composed, and
represented; and

. when the classes to instantiate are specified at run-time, for example, by dynamic loading; or
. toavoid building a class hierarchy of factories that parallels the class hierarchy of products; or

. when instances of aclass can have one of only afew different combinations of state. It may be more
convenient to install a corresponding number of prototypes and clone them rather than instantiating the class
manually, each time with the appropriate state.

v Structure

Client prototype m Protolype
Operation{) ¢ Clone()
|
: J\
=
p = prototype-=Cione() | |
ConcretePrototypel ConcretePrototypea2
Clone() 5 Clone() ¢
i i
I I
' =
retum copy of self return copy of self

¥ Participants
. Prototype (Graphic)
o declares an interface for cloning itself.
. ConcretePrototype (Staff, WholeNote, HalfNote)
o implements an operation for cloning itself.
. Client (GraphicTool)

o creates anew object by asking a prototypeto cloneitself.

v Collaborations

. A client asks a prototype to clone itself.

v Consequences

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3dfs.htm (2 of 8) [21/08/2002 19:08:51]

Prototype

Prototype has many of the same consequences that Abstract Factory (87) and Builder (97) have: It hides the concrete

product classes from the client, thereby reducing the number of names clients know about. Moreover, these patterns
let aclient work with application-specific classes without modification.

Additional benefits of the Prototype pattern are listed below.

1. Adding and removing products at run-time. Prototypes let you incorporate a new concrete product classinto a
system simply by registering a prototypical instance with the client. That's a bit more flexible than other
creationa patterns, because a client can install and remove prototypes at run-time.

2. Jecifying new objects by varying values. Highly dynamic systems let you define new behavior through
object composition—by specifying values for an object's variables, for example—and not by defining new
classes. Y ou effectively define new kinds of objects by instantiating existing classes and registering the
instances as prototypes of client objects. A client can exhibit new behavior by delegating responsibility to the
prototype.

Thiskind of design lets users define new "classes" without programming. In fact, cloning a prototypeis
similar to instantiating a class. The Prototype pattern can greatly reduce the number of classes a system
needs. In our music editor, one GraphicTool class can create alimitless variety of music objects.

3. Specifying new objects by varying structure. Many applications build objects from parts and subparts. Editors
for circuit design, for example, build circuits out of subcircuits.1 For convenience, such applications often let
you instantiate complex, user-defined structures, say, to use a specific subcircuit again and again.

The Prototype pattern supports this as well. We simply add this subcircuit as a prototype to the palette of
available circuit elements. Aslong as the composite circuit object implements Clone as a deep copy, circuits
with different structures can be prototypes.

4. Reduced subclassing. Factory Method (107) often produces a hierarchy of Creator classes that parallels the
product class hierarchy. The Prototype pattern lets you clone a prototype instead of asking afactory method
to make a new object. Hence you don't need a Creator class hierarchy at al. This benefit applies primarily to
languages like C++ that don't treat classes as first-class objects. Languages that do, like Smalltalk and
Objective C, derive less benefit, since you can always use a class object as a creator. Class objects already act
like prototypes in these languages.

5. Configuring an application with classes dynamically. Some run-time environments let you load classes into
an application dynamically. The Prototype pattern is the key to exploiting such facilitiesin alanguage like
C++.

An application that wants to create instances of adynamically loaded class won't be able to referenceits
constructor statically. Instead, the run-time environment creates an instance of each class automatically when
it's loaded, and it registers the instance with a prototype manager (see the Implementation section). Then the
application can ask the prototype manager for instances of newly loaded classes, classes that weren't linked
with the program originally. The ET++ application framework [WGM88] has a run-time system that uses this

scheme.

The main liability of the Prototype pattern is that each subclass of Prototype must implement the Cl one operation,
which may be difficult. For example, adding Cl one is difficult when the classes under consideration aready exist.
Implementing Cl one can be difficult when their internals include objects that don't support copying or have circular
references.

* Implementation

Prototype is particularly useful with static languages like C++, where classes are not objects, and little or no type
information is available at run-time. It's less important in languages like Smalltalk or Objective C that provide what
amounts to a prototype (i.e., a class object) for creating instances of each class. This pattern is built into prototype-
based languages like Self [US87], in which all object creation happens by cloning a prototype.

Consider the following issues when implementing prototypes:

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3dfs.htm (3 of 8) [21/08/2002 19:08:51]

Prototype

1. Using a prototype manager. When the number of prototypesin asystem isn't fixed (that is, they can be
created and destroyed dynamically), keep aregistry of available prototypes. Clients won't manage prototypes
themselves but will store and retrieve them from the registry. A client will ask the registry for a prototype
before cloning it. We call this registry a prototype manager.

A prototype manager is an associative store that returns the prototype matching a given key. It has operations
for registering a prototype under akey and for unregistering it. Clients can change or even browse through
the registry at run-time. This lets clients extend and take inventory on the system without writing code.

2. Implementing the Clone operation. The hardest part of the Prototype pattern is implementing the Clone
operation correctly. It's particularly tricky when abject structures contain circular references.

Most languages provide some support for cloning objects. For example, Smalltalk provides an
implementation of copy that's inherited by all subclasses of Object. C++ provides a copy constructor. But
these facilities don't solve the "shallow copy versus deep copy" problem [GR83]. That is, does cloning an
object in turn clone its instance variables, or do the clone and original just share the variables?

A shallow copy is simple and often sufficient, and that's what Smalltalk provides by default. The default copy
constructor in C++ does a member-wise copy, which means pointers will be shared between the copy and the
original. But cloning prototypes with complex structures usually requires a deep copy, because the clone and
the original must be independent. Therefore you must ensure that the clone's components are clones of the
prototype's components. Cloning forces you to decide what if anything will be shared.

If objects in the system provide Save and L oad operations, then you can use them to provide a default
implementation of Clone simply by saving the object and loading it back immediately. The Save operation
saves the object into a memory buffer, and Load creates a duplicate by reconstructing the object from the
buffer.

3. Initializing clones. While some clients are perfectly happy with the clone asis, others will want to initialize
some or al of itsinternal state to values of their choosing. Y ou generally can't pass these values in the Clone
operation, because their number will vary between classes of prototypes. Some prototypes might need
multiple initialization parameters; others won't need any. Passing parameters in the Clone operation precludes
auniform cloning interface.

It might be the case that your prototype classes already define operations for (re)setting key pieces of state. If
S0, clients may use these operations immediately after cloning. If not, then you may have to introduce an
Initialize operation (seethe Sample Code section) that takes initialization parameters as arguments and
sets the clone'sinterna state accordingly. Beware of deep-copying Clone operations—the copies may haveto
be deleted (either explicitly or within| ni ti al i ze) before you reinitialize them.

v Sample Code

Well defineaMazePr ot ot ypeFact or y subclass of the MazeFact or y class (page 92).

MazePr ot ot ypeFact ory will beinitialized with prototypes of the objects it will create so that we don't have to
subclassit just to change the classes of walls or rooms it creates.

MazePr ot ot ypeFact or y augmentsthe MazeFact or y interface with a constructor that takes the prototypes as
arguments:

cl ass MazePrototypeFactory : public MazeFactory {
publi c:
MazePr ot ot ypeFact ory(Maze*, Wall*, Roont, Door*);

virtual Maze* MakeMaze() const;

virtual Roont MakeRoomn(int) const;

virtual wall* MakeWall () const;

virtual Door* MakeDoor (Roont, Roonf) const;

private:

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3dfs.htm (4 of 8) [21/08/2002 19:08:51]

Prototype

Maze* _prototypeMaze;
Roont _pr ot ot ypeRoom
Wal | * prototypeWvall;
Door* _prot ot ypeDoor;

b
The new constructor simply initializes its prototypes.

MazePr ot ot ypeFact ory: : MazePr ot ot ypeFactory (
Maze* m WVall* w, Roonr r, Door* d

) |
_prototypeMaze = m
_prototypeVall = w;
_prototypeRoom = r;
_prototypeDoor = d;
}

The member functions for creating walls, rooms, and doors are similar: Each clones a prototype and then initializes
it. Here are the definitions of MakeWal | and MakeDoor :

Wal | * MazeProt ot ypeFactory:: MakeWall () const {
return _prototypeVall->C one();

}

Door* MazePr ot ot ypeFact ory: : MakeDoor (Roont r1, Room *r2) const {
Door* door = _prototypeDoor->C one();
door->Initialize(rl, r2);
return door;

}

We can use MazePr ot ot ypeFact or y to create a prototypical or default maze just by initializing it with
prototypes of basic maze components:

MazeGane gane;
MazePr ot ot ypeFact ory si npl eMazeFact or y(
new Maze, new Wall, new Room new Door

)

Maze* maze = gane. Creat eMaze(si npl eMazeFact ory);

To change the type of maze, we initiaize MazePr ot ot ypeFact or y with adifferent set of prototypes. The
following call creates a maze with aBonbedDoor and a RoomA t hABonb:

MazePr ot ot ypeFact ory bonbedMazeFact or y(
new Maze, new BonmbedWal |,
new RoomA t hABonmb, new Door

)

An object that can be used as a prototype, such as an instance of Wl | , must support the Cl one operation. It must
also have a copy constructor for cloning. It may aso need a separate operation for reinitializing interna state. Well
addthel ni ti al i ze operationto Door to let clientsinitialize the clone's rooms.

Compare the following definition of Door to the one on page 83:

class Door : public MapSite {
public:

Door () ;

Door (const Door &) ;

virtual void Initialize(Roont, Roont);
virtual Door* Cl one() const;

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3dfs.htm (5 of 8) [21/08/2002 19:08:51]

Prototype

virtual void Enter();

Roont O her Si deFr on{ Roont) ;
private:

Roon* _roont,

Roont _roontg;

}s

Door: : Door (const Door& other) {

_rooml = other._roont;
_roonR2 = other._roong;
}
void Door::Initialize (Roont rl1, Roont r2) {
_roonml = r1,;
_roon2 = r2;
}

Door* Door::C one () const {
return new Door (*this);
}

The BorbedWal | subclass must override Cl one and implement a corresponding copy constructor.

cl ass BonmbedWall : public Vall {
publi c:

BormbedVal | () ;

BonbedWal | (const BonbedWal | &) ;

virtual wall* C one() const;
bool HasBonb();

private:
bool bonb;

}s

BonbedWal | : : BonbedWal | (const BonbedWal | & other) : Wall (other) {
_bonb = ot her. bonb;

}

Wal | * BonbedWal l:: O one () const {
return new BonbedWal |l (*t his);
}

Although BonbedWal | : : C one returnsaWal | * | itsimplementation returns a pointer to a new instance of a
subclass, that is, aBonbedWal | *. We define T one like thisin the base class to ensure that clients that clone the
prototype don't have to know about their concrete subclasses. Clients should never need to downcast the return value
of C one to the desired type.

In Smalltalk, you can reuse the standard copy method inherited from Cbj ect to cloneany MapSi t e. You can use
MazeFact ory to produce the prototypes you'll need; for example, you can create aroom by supplying the name
#r oom The MazeFact or y hasadictionary that maps names to prototypes. Its make: method looks like this:

make: part Nane
N (partCatal og at: partNane) copy

Given appropriate methods for initializing the MazeFact or y with prototypes, you could create a simple maze with
the following code:

Creat eMaze
on: (MazeFactory new
wi th: Door new naned: #door;
with: Wall new naned: #wall;

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3dfs.htm (6 of 8) [21/08/2002 19:08:51]

Prototype

wi t h: Room new naned: #room
your sel f)

where the definition of theon: class method for Cr eat eMaze would be

on: aFactory
| roonl roon? |

rooml : = (aFactory nake: #roon) |ocation: 1@l.

roon2 := (aFactory nake: #roon) |ocation: 2@l.

door := (aFactory nake: #door) from roonl to: roon®.
roomi

at Side: #north put: (aFactory meke: #wall);
at Si de: #east put: door;
at Si de: #south put: (aFactory meke: #wall);
at Si de: #west put: (aFactory nmke: #wall).
roong
at Side: #north put: (aFactory make: #wall);
at Si de: #east put: (aFactory nmke: #wall);
at Si de: #south put: (aFactory make: #wall);
at Si de: #west put: door.
N Maze new
addRoom roont;
addRoom roon®;
your sel f

* Known Uses

Perhaps the first example of the Prototype pattern was in Ivan Sutherland's Sketchpad system [Sut63]. The first
widely known application of the pattern in an object-oriented language was in ThingL ab, where users could form a
composite object and then promote it to a prototype by installing it in alibrary of reusable objects [Bor81]. Goldberg
and Robson mention prototypes as a pattern [GR83], but Coplien [Cop92] gives a much more complete description.
He describes idioms related to the Prototype pattern for C++ and gives many examples and variations.

Etgdb is a debugger front-end based on ET++ that provides a point-and-click interface to different line-oriented
debuggers. Each debugger has a corresponding DebuggerAdaptor subclass. For example, GdbAdaptor adapts etgdb
to the command syntax of GNU gdb, while SunDbxAdaptor adapts etgdb to Sun's dbx debugger. Etgdb does not
have a set of DebuggerAdaptor classes hard-coded into it. Instead, it reads the name of the adaptor to use from an
environment variable, looks for a prototype with the specified name in aglobal table, and then clones the prototype.
New debuggers can be added to etgdb by linking it with the DebuggerAdaptor that works for that debugger.

The "interaction technique library” in Mode Composer stores prototypes of objects that support various interaction
techniques [Sha90]. Any interaction technique created by the Mode Composer can be used as a prototype by placing
itinthislibrary. The Prototype pattern lets Mode Composer support an unlimited set of interaction techniques.

The music editor example discussed earlier is based on the Unidraw drawing framework [VL90].

v Related Patterns

Prototype and Abstract Factory (87) are competing patterns in some ways, as we discuss at the end of this chapter.

They can also be used together, however. An Abstract Factory might store a set of prototypes from which to clone
and return product objects.

Designs that make heavy use of the Composite (163) and Decorator (175) patterns often can benefit from Prototype
aswell.

Y
» Singleton

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3dfs.htm (7 of 8) [21/08/2002 19:08:51]

Prototype

4 Factory Method

1Such applications reflect the Composite (163) and Decorator (175) patterns.

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3dfs.htm (8 of 8) [21/08/2002 19:08:51]

Singleton

©

SEARCH

Intent
Mativation
Applicability
Structure
Participants
Collaborations
Consequences
Implementation
Sample Code
Known Uses
Related Patterns

Pattern Catalog | Conclusion

Singleton Object Creational

| Contents |ﬁ.|i|:|ntu Hﬂﬂdﬂ'5| Glossary | Notation | Foundation | Bibliography | Index | Pattern Map |

Case Study

v Intent

Ensure a class only has one instance, and provide a global point of accessto it.

* Motivation

It'simportant for some classes to have exactly one instance. Although there can be many printersin a
system, there should be only one printer spooler. There should be only one file system and one window
manager. A digital filter will have one A/D converter. An accounting system will be dedicated to serving
one company.

How do we ensure that a class has only one instance and that the instance is easily accessible? A global
variable makes an object accessible, but it doesn't keep you from instantiating multiple objects.

A better solution isto make the class itself responsible for keeping track of its sole instance. The class
can ensure that no other instance can be created (by intercepting requests to create new objects), and it
can provide away to access the instance. Thisisthe Singleton pattern.

v Applicability
Use the Singleton pattern when

. there must be exactly one instance of aclass, and it must be accessible to clients from awell-
known access point.

. when the sole instance should be extensible by subclassing, and clients should be able to use an
extended instance without modifying their code.

v Structure

Singleton

stafic Instance() W---q1---------7
SingletonOperation?)
GetSingleionDatal)

refurm unigualnsiance

static uniquelinstance
singlatonData

v Participants

. Singleton

o defines an Instance operation that lets clients access its unique instance. Instance is a class
operation (that is, a class method in Smalltalk and a static member function in C++).

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3efs.htm (1 of 7) [21/08/2002 19:09:28]

javascript:loadApplet()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3e.htm#relatedpatterns
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3e.htm#knownuses
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3e.htm#samplecode
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3e.htm#implementation
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3e.htm#consequences
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3e.htm#collaborations
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3e.htm#participants
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3e.htm#structure
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3e.htm#applicability
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3e.htm#motivation
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3e.htm#intent
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/helpfs.htm
javascript:build()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/patcafs.htm

Singleton

1

o may be responsible for creating its own unique instance.

v Collaborations

Clients access a Singleton instance solely through Singleton's I nstance operation.

¥ Consequences

The Singleton pattern has severa benefits:

Controlled access to sole instance. Because the Singleton class encapsul ates its sole instance, it
can have strict control over how and when clients access it.

Reduced name space. The Singleton pattern is an improvement over global variables. It avoids
polluting the name space with global variables that store sole instances.

Permits refinement of operations and representation. The Singleton class may be subclassed, and
it's easy to configure an application with an instance of this extended class. Y ou can configure the
application with an instance of the class you need at run-time.

Permits a variable number of instances. The pattern makesit easy to change your mind and allow
more than one instance of the Singleton class. Moreover, you can use the same approach to
control the number of instances that the application uses. Only the operation that grants access to
the Singleton instance needs to change.

More flexible than class operations. Another way to package a singleton's functionality isto use
class operations (that is, static member functionsin C++ or class methods in Smalltalk). But both
of these language techniques make it hard to change a design to allow more than one instance of a
class. Moreover, static member functions in C++ are never virtual, so subclasses can't override
them polymorphically.

v Implementation

Here are implementation issues to consider when using the Singleton pattern:

1. Ensuring a unique instance. The Singleton pattern makes the sole instance anormal instance of a

class, but that class is written so that only one instance can ever be created. A common way to do
thisisto hide the operation that creates the instance behind a class operation (that is, either a static
member function or a class method) that guarantees only one instance is created. This operation
has access to the variable that holds the unique instance, and it ensures the variableisinitialized
with the unique instance before returning its value. This approach ensures that a singleton is
created and initialized before its first use.

Y ou can define the class operation in C++ with a static member function | nst ance of the
Si ngl et on class. Si ngl et on also defines a static member variable _i nst ance that
contains a pointer to its unigue instance.

The Si ngl et on classisdeclared as

cl ass Singleton {
publi c:

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3efs.htm (2 of 7) [21/08/2002 19:09:28]

Singleton

static Singleton* Instance();
pr ot ect ed:

Si ngl eton();
private:

static Singleton* _instance;

1
The corresponding implementation is

Si ngl eton* Singleton::_instance = 0;

Si ngl eton* Singleton::lnstance () {
if (_instance == 0) {
_instance = new Singl et on;
}

return _instance;

}

Clients access the singleton exclusively through the | nst ance member function. The variable
_i nstance isinitialized to 0, and the static member function | nst ance returnsits value,
initializing it with the unique instanceif itis0. | nst ance useslazy initiaization; the value it
returns isn't created and stored until it's first accessed.

Notice that the constructor is protected. A client that triesto instantiate Si ngl et on directly will
get an error at compile-time. This ensures that only one instance can ever get created.

Moreover, sincethe _i nst ance isapointer to a Singleton object, the | nst ance member
function can assign a pointer to a subclass of Singleton to this variable. Well give an example of
thisin the Sample Code.

There's another thing to note about the C++ implementation. It isn't enough to define the singleton
asaglobal or static object and then rely on automatic initialization. There are three reasons for
this:

1. We can't guarantee that only one instance of a static object will ever be declared.

2. We might not have enough information to instantiate every singleton at static initialization
time. A singleton might require values that are computed later in the program's execution.

3. C++ doesn't define the order in which constructors for global objects are called across
trandation units [ES90]. This means that no dependencies can exist between singletons; if
any do, then errors areinevitable.

An added (albeit small) liability of the global/static object approach is that it forces all singletons
to be created whether they are used or not. Using a static member function avoids all of these
problems.

In Smalltalk, the function that returns the unique instance is implemented as a class method on the
Singleton class. To ensure that only one instance is created, override the new operation. The
resulting Singleton class might have the following two class methods, where Sol el nst ance is
aclass variable that is not used anywhere else:

new
self error: 'cannot create new object’

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3efs.htm (3 of 7) [21/08/2002 19:09:28]

Singleton

def aul t
Sol el nstance isNil ifTrue: [Solelnstance := super new.
AN Sol el nst ance

2. Subclassing the Singleton class. The main issue is not so much defining the subclass but installing
its unique instance so that clients will be able to use it. In essence, the variable that refersto the
singleton instance must get initialized with an instance of the subclass. The simplest techniqueis
to determine which singleton you want to use in the Singleton's | nst ance operation. An
example in the Sample Code shows how to implement this technique with environment variables.

Another way to choose the subclass of Singleton isto take the implementation of | nst ance out
of the parent class (e.g., MazeFact or y) and put it in the subclass. That lets a C++ programmer
decide the class of singleton at link-time (e.g., by linking in an object file containing a different
implementation) but keeps it hidden from the clients of the singleton.

The link approach fixes the choice of singleton class at link-time, which makes it hard to choose
the singleton class at run-time. Using conditional statements to determine the subclassis more
flexible, but it hard-wires the set of possible Singleton classes. Neither approach isflexible
enough in all cases.

A more flexible approach uses aregistry of singletons. Instead of having | nst ance define the
set of possible Singleton classes, the Singleton classes can register their singleton instance by
name in awell-known registry.

The registry maps between string names and singletons. When | nst ance needs asingleton, it
consults the registry, asking for the singleton by name. The registry looks up the corresponding
singleton (if it exists) and returnsit. This approach frees| nst ance from knowing all possible
Singleton classes or instances. All it requiresis a common interface for all Singleton classes that
includes operations for the registry:

class Singleton {
publ i c:
static void Register(const char* nane, Singleton*);
static Singleton* Instance();
pr ot ect ed:
static Singleton* Lookup(const char* nane);
private:
static Singleton* _instance;
static List<NameSi ngl etonPair>* _registry;

H

Regi st er registersthe Singleton instance under the given name. To keep the registry smple,
well have it store alist of NanmeSi ngl et onPai r objects. Each NanmeSi ngl et onPai r maps
anameto asingleton. The Lookup operation finds a singleton given its name. We'll assume that
an environment variable specifies the name of the singleton desired.

Si ngl eton* Singleton::lnstance () {
if (_instance == 0) {
const char* singletonNane = getenv("SI NGLETON") ;
/1l user or environment supplies this at startup

_instance = Lookup(singl etonNane);
/1 Lookup returns O if there's no such singleton

}

return _instance;

}

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3efs.htm (4 of 7) [21/08/2002 19:09:28]

Singleton

Where do Singleton classes register themselves? One possibility isin their constructor. For
example, aMy Si ngl et on subclass could do the following:

MySi ngl eton: : MySi ngl eton() {

...

Si ngl et on: : Regi ster ("MWSingleton", this);
}

Of course, the constructor won't get called unless someone instantiates the class, which echoes the
problem the Singleton pattern istrying to solve! We can get around this problem in C++ by
defining a static instance of My Si ngl et on. For example, we can define

static MySingl eton theSingleton;
in the file that contains My Si ngl et on'simplementation.

No longer is the Singleton class responsible for creating the singleton. Instead, its primary
responsibility isto make the singleton object of choice accessible in the system. The static object
approach still has a potential drawback—namely that instances of all possible Singleton
subclasses must be created, or else they won't get registered.

v Sample Code

Suppose we defineaMazeFact or y class for building mazes as described on page 92. MazeFact ory

defines an interface for building different parts of a maze. Subclasses can redefine the operations to
return instances of specialized product classes, like BonbedWal | objectsinstead of plain WAl | objects.

What's relevant here is that the Maze application needs only one instance of a maze factory, and that
instance should be available to code that builds any part of the maze. Thisis where the Singleton pattern
comesin. By making the MazeFact or y asingleton, we make the maze object globally accessible
without resorting to global variables.

For simplicity, let's assume we'll never subclass MazeFact or y. (Well consider the alternativein a
moment.) We make it a Singleton classin C++ by adding astatic | nst ance operation and a static

_i nst ance member to hold the one and only instance. We must also protect the constructor to prevent
accidental instantiation, which might lead to more than one instance.

cl ass MazeFactory {
publi c:
static MazeFactory* Instance();

/'l existing interface goes here
pr ot ect ed:

MazeFactory();
private:

static MazeFactory* _instance;

s

The corresponding implementation is

MazeFact ory* MazeFactory:: instance = 0;

MazeFact ory* MazeFactory::Instance () {

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3efs.htm (5 of 7) [21/08/2002 19:09:28]

Singleton

if (_instance == 0) {
_instance = new MazeFactory;
}

return _instance;

}

Now let's consider what happens when there are subclasses of MazeFact or y, and the application must
decide which one to use. We'll select the kind of maze through an environment variable and add code
that instantiates the proper MazeFact or y subclass based on the environment variable's value. The

| nst ance operation isagood place to put this code, because it already instantiates MazeFact or y:

MazeFact ory* MazeFactory::Instance () {
if (_instance == 0) {
const char* mazeStyle = getenv("MAZESTYLE");

if (strcnmp(nmazeStyle, "bonbed") == 0) {
_instance = new BonbedMazeFactory;

} else if (strcnp(mazeStyle, "enchanted") == 0) {
_instance = new Enchant edMazeFact ory;

/1l ... other possible subcl asses

} else { /1 default
_instance = new MazeFactory;
}
}

return _instance;

}

Notethat | nst ance must be modified whenever you define a new subclass of MazeFact ory. That
might not be a problem in this application, but it might be for abstract factories defined in a framework.

A possible solution would be to use the registry approach described in the Implementation section.
Dynamic linking could be useful here as well—it would keep the application from having to load all the
subclasses that are not used.

* Known Uses

An example of the Singleton pattern in Smalltalk-80 [Par90] is the set of changesto the code, whichis
ChangeSet current. A more subtle exampleisthe relationship between classes and their
metaclasses. A metaclass is the class of a class, and each metaclass has one instance. M etaclasses do not
have names (except indirectly through their sole instance), but they keep track of their sole instance and
will not normally create another.

The InterViews user interface toolkit [LCI+92] uses the Singleton pattern to access the unique instance
of its Session and WidgetKit classes, among others. Session defines the application's main event dispatch
loop, stores the user's database of stylistic preferences, and manages connections to one or more physical
displays. WidgetKit is an Abstract Factory (87) for defining the look and feel of user interface widgets.
TheW dget Ki t: : i nstance() operation determines the particular WidgetKit subclass that's
instantiated based on an environment variable that Session defines. A similar operation on Session
determines whether monochrome or color displays are supported and configures the singleton Session
instance accordingly.

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3efs.htm (6 of 7) [21/08/2002 19:09:28]

Singleton

v Related Patterns

Many patterns can be implemented using the Singleton pattern. See Abstract Factory (87), Builder (97),
and Prototype (117).

A
p Discussion of Creational Patterns

4 Prototype

Abstract Factory » Adapter = Bridge * Builder = Chain of Responsibility = Command = Composite =
Decorator + Facade * Factory Method * Flyweight « Interpreter « lterator + Mediator = Memento ¢
Observer * Prototype « Proxy + Singleton = State + Strategy *+ Template Method » Visitor

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3efs.htm (7 of 7) [21/08/2002 19:09:28]

Discussion of Creationa Patterns

G) Discussion of Case Study | Pattern Catalog | Conclusion
SEAREH Creational Patterns

| Contents |Guide1nﬂeﬂders| Glossary | Notation | Foundation | Bibliography | Index | Pniternl.h:|

There are two common ways to parameterize a system by the classes of objectsit creates. One way isto
subclass the class that creates the objects; this corresponds to using the Factory Method (107) pattern.
The main drawback of this approach isthat it can require creating a new subclass just to change the class
of the product. Such changes can cascade. For example, when the product creator isitself created by a
factory method, then you have to override its creator as well.

The other way to parameterize a system relies more on object composition: Define an object that's
responsible for knowing the class of the product objects, and make it a parameter of the system. Thisisa
key aspect of the Abstract Factory (87), Builder (97), and Prototype (117) patterns. All three involve
creating a new "factory object” whose responsibility isto create product objects. Abstract Factory has the
factory object producing objects of severa classes. Builder has the factory object building a complex
product incrementally using a correspondingly complex protocol. Prototype has the factory object
building a product by copying a prototype object. In this case, the factory object and the prototype are the
same object, because the prototype is responsible for returning the product.

Consider the drawing editor framework described in the Prototype pattern. There are several waysto
parameterize a GraphicTool by the class of product:

. By applying the Factory Method pattern, a subclass of GraphicTool will be created for each
subclass of Graphic in the palette. GraphicTool will have a NewGraphic operation that each
GraphicTool subclasswill redefine.

. By applying the Abstract Factory pattern, there will be a class hierarchy of GraphicsFactories, one
for each Graphic subclass. Each factory creates just one product in this case: CircleFactory will
create Circles, LineFactory will create Lines, and so on. A GraphicTool will be parameterized
with afactory for creating the appropriate kind of Graphics.

. By applying the Prototype pattern, each subclass of Graphics will implement the Clone operation,
and a GraphicTool will be parameterized with a prototype of the Graphic it creates.

Which pattern is best depends on many factors. In our drawing editor framework, the Factory Method
pattern is easiest to use at first. It's easy to define a new subclass of GraphicTool, and the instances of
GraphicTool are created only when the palette is defined. The main disadvantage here is that
GraphicTool subclasses proliferate, and none of them does very much.

Abstract Factory doesn't offer much of an improvement, because it requires an equally large
GraphicsFactory class hierarchy. Abstract Factory would be preferable to Factory Method only if there
were already a GraphicsFactory class hierarchy—either because the compiler providesit automatically
(asin Smalltalk or Objective C) or because it's needed in another part of the system.

Overall, the Prototype pattern is probably the best for the drawing editor framework, because it only
requires implementing a Clone operation on each Graphics class. That reduces the number of classes, and
Clone can be used for purposes other than pure instantiation (e.g., a Duplicate menu operation).

Factory Method makes a design more customizable and only alittle more complicated. Other design
patterns require new classes, whereas Factory Method only requires a new operation. People often use
Factory Method as the standard way to create objects, but it isn't necessary when the class that's
instantiated never changes or when instantiation takes place in an operation that subclasses can easily
override, such as an initialization operation.

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/disc3fs.htm (1 of 2) [21/08/2002 19:10:23]

javascript:loadApplet()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/helpfs.htm
javascript:build()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/patcafs.htm

Discussion of Creationa Patterns

Designs that use Abstract Factory, Prototype, or Builder are even more flexible than those that use
Factory Method, but they're also more complex. Often, designs start out using Factory Method and
evolve toward the other creational patterns as the designer discovers where more flexibility is needed.
Knowing many design patterns gives you more choices when trading off one design criterion against
another.

A
p Structural Patterns

4 Singleton

Abstract Factory = Adapter » Bridge * Builder + Chain of Responsibility * Command « Composite «
Decorator * Facade = Factory Method = Flyweight = Imterpreter = lterator = Mediator = Memento »
Observer * Prototype « Proxy * Singleton * State * Strategy +« Template Method Visitor

o

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/disc3fs.htm (2 of 2) [21/08/2002 19:10:23]

Structural Patterns

Case Study | Pattern Catalog | Conclusion

O Structural Patterns

SEARCH

| Contents |Guide1nﬂeﬂders| Glossary | Notation | Foundation | Bibliography | Index | Pniternl.h:|

Structural patterns are concerned with how classes and objects are composed to form larger structures.
Structural class patterns use inheritance to compose interfaces or implementations. As a simple example,
consider how multiple inheritance mixes two or more classes into one. The result is a class that combines
the properties of its parent classes. This pattern is particularly useful for making independently devel oped
classlibraries work together. Another example is the class form of the Adapter (139) pattern. In general,
an adapter makes one interface (the adaptee's) conform to another, thereby providing a uniform
abstraction of different interfaces. A class adapter accomplishes this by inheriting privately from an
adaptee class. The adapter then expresses its interface in terms of the adaptee's.

Rather than composing interfaces or implementations, structural object patterns describe ways to
compose objects to realize new functionality. The added flexibility of object composition comes from the
ability to change the composition at run-time, which isimpossible with static class composition.

Composite (163) is an example of a structural object pattern. It describes how to build a class hierarchy
made up of classes for two kinds of objects: primitive and composite. The composite objects let you
compose primitive and other composite objects into arbitrarily complex structures. In the Proxy (207)
pattern, a proxy acts as a convenient surrogate or placeholder for another object. A proxy can be used in
many ways. It can act as alocal representative for an object in aremote address space. It can represent a
large object that should be loaded on demand. It might protect access to a sensitive object. Proxies
provide alevel of indirection to specific properties of objects. Hence they can restrict, enhance, or alter
these properties.

The Flyweight (195) pattern defines a structure for sharing objects. Objects are shared for at |east two
reasons: efficiency and consistency. Flyweight focuses on sharing for space efficiency. Applications that
use lots of objects must pay careful attention to the cost of each object. Substantial savings can be had by
sharing objects instead of replicating them. But objects can be shared only if they don't define context-
dependent state. Flyweight objects have no such state. Any additional information they need to perform
their task is passed to them when needed. With no context-dependent state, Flyweight objects may be
shared freely.

Whereas Flyweight shows how to make lots of little objects, Facade (185) shows how to make asingle
object represent an entire subsystem. A facade is arepresentative for a set of objects. The facade carries
out its responsihilities by forwarding messages to the objectsit represents. The Bridge (151) pattern
separates an object's abstraction from its implementation so that you can vary them independently.

Decorator (175) describes how to add responsibilities to objects dynamically. Decorator is a structural
pattern that composes objects recursively to alow an open-ended number of additional responsibilities.
For example, a Decorator object containing a user interface component can add a decoration like a border
or shadow to the component, or it can add functionality like scrolling and zooming. We can add two
decorations simply by nesting one Decorator object within another, and so on for additional decorations.
To accomplish this, each Decorator object must conform to the interface of its component and must
forward messages to it. The Decorator can do itsjob (such as drawing a border around the component)
either before or after forwarding a message.

Many structural patterns are related to some degree. We'll discuss these relationships at the end of the
chapter.

i
» Adapter

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap4fs.htm (1 of 2) [21/08/2002 19:10:54]

javascript:loadApplet()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/helpfs.htm
javascript:build()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/patcafs.htm

Structural Patterns

4 Discussion of Creational Patterns

Abstract Factory = Adapter » Bridge = Builder = Chain of Responsibility = Command « Composite »
Decorator = Facade = Factory Method = Flyweight = Interpreter = lterator = Mediator = Memento *
Observer = Prototype + Proxy + Singleton = State » Strategy = Template Method = Visitor

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap4fs.htm (2 of 2) [21/08/2002 19:10:54]

Adapter

O

SEARCH

Intent

Also Known As
Motivation
Applicability
Structure
Participants
Collaborations
Consequences
Implementation
Sample Code
Known Uses
Related Patterns

Help | Intro | Case Study | Pattern Catalog | Conclusion

Adapter Class, Object Structural

| Contents |Guide to Readers | Glossary | Notation | Foundation | Bibliography | Index | Pattern Map |

v Intent

Convert the interface of a class into another interface clients expect. Adapter lets classes work together that
couldn't otherwise because of incompatible interfaces.

* Also Known As

Wrapper

v Motivation

Sometimes atoolkit class that's designed for reuse isn't reusable only because its interface doesn't match the
domain-specific interface an application requires.

Consider for example adrawing editor that lets users draw and arrange graphical elements (lines, polygons, text,
etc.) into pictures and diagrams. The drawing editor's key abstraction is the graphical object, which has an
editable shape and can draw itself. The interface for graphical objectsis defined by an abstract class called
Shape. The editor defines a subclass of Shape for each kind of graphical object: a LineShape class for lines, a
PolygonShape class for polygons, and so forth.

Classes for elementary geometric shapes like LineShape and PolygonShape are rather easy to implement,
because their drawing and editing capabilities are inherently limited. But a TextShape subclass that can display
and edit text is considerably more difficult to implement, since even basic text editing involves complicated
screen update and buffer management. Meanwhile, an off-the-shelf user interface toolkit might already provide a
sophisticated TextView class for displaying and editing text. Ideally we'd like to reuse TextView to implement
TextShape, but the toolkit wasn't designed with Shape classes in mind. So we can't use TextView and Shape
objects interchangeably.

How can existing and unrelated classes like TextView work in an application that expects classes with a
different and incompatible interface? We could change the TextView class so that it conforms to the Shape
interface, but that isn't an option unless we have the toolkit's source code. Even if we did, it wouldn't make sense
to change TextView; the toolkit shouldn't have to adopt domain-specific interfaces just to make one application
work.

Instead, we could define TextShape so that it adapts the TextView interface to Shape's. We can do thisin one of
two ways: (1) by inheriting Shape'sinterface and TextView's implementation or (2) by composing a TextView
instance within a TextShape and implementing TextShape in terms of TextView'sinterface. These two
approaches correspond to the class and object versions of the Adapter pattern. We call TextShape an adapter.

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4afs.htm (1 of 10) [21/08/2002 19:11:36]

javascript:loadApplet()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4a.htm#relatedpatterns
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4a.htm#knownuses
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4a.htm#samplecode
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4a.htm#implementation
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4a.htm#consequences
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4a.htm#collaborations
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4a.htm#participants
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4a.htm#structure
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4a.htm#applicability
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4a.htm#motivation
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4a.htm#alsoknownas
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4a.htm#intent
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/helpfs.htm
javascript:build()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/patcafs.htm

Adapter

DrawingEditor 4-'" Shape —m TextView
BoundingBaoxi) GetExent()
Createfanipulator)
| | Texg
Line TextShape
BaundingBox() BoundingBox() O-f—-==—==—" relum texl-=GetExtant()
CrealsManipulaton) CraateManipulator) o-r-----

=== retwm new TexiManipulator

This diagram illustrates the object adapter case. It shows how BoundingBox requests, declared in class Shape,
are converted to GetExtent requests defined in TextView. Since TextShape adapts TextView to the Shape
interface, the drawing editor can reuse the otherwise incompatible TextView class.

Often the adapter is responsible for functionality the adapted class doesn't provide. The diagram shows how an
adapter can fulfill such responsibilities. The user should be able to "drag" every Shape object to a new location
interactively, but TextView isn't designed to do that. TextShape can add this missing functionality by
implementing Shape's CreateM anipulator operation, which returns an instance of the appropriate Manipulator
subclass.

Manipulator is an abstract class for objects that know how to animate a Shape in response to user input, like
dragging the shape to anew location. There are subclasses of Manipulator for different shapes,
TextManipulator, for example, is the corresponding subclass for TextShape. By returning a TextManipul ator
instance, TextShape adds the functionality that TextView lacks but Shape requires.

v Applicability
Use the Adapter pattern when
. you want to use an existing class, and its interface does not match the one you need.

. you want to create a reusable class that cooperates with unrelated or unforeseen classes, that is, classes
that don't necessarily have compatible interfaces.

. (object adapter only) you need to use several existing subclasses, but it'simpractical to adapt their
interface by subclassing every one. An object adapter can adapt the interface of its parent class.

v Structure

A class adapter uses multiple inheritance to adapt one interface to another:

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4afs.htm (2 of 10) [21/08/2002 19:11:36]

Adapter

Clignt ——® Target Adaptee

Reqguest) SpecificRequest()

A A

{implemeantation)

Adapter
- e
Request{) ©-F--—-—---1 SpecificRequest()
An object adapter relies on object composition:
Client — ™ Target — Adaptes
Reguesty) SpecificRequest()
adaplee
Adapter
N T
Request() &-f----------- adaptee—=SpacificRequast()

v Participants

Target (Shape)
o defines the domain-specific interface that Client uses.
. Client (DrawingEditor)
o collaborates with objects conforming to the Target interface.
. Adaptee (TextView)
o defines an existing interface that needs adapting.
. Adapter (TextShape)

o adaptsthe interface of Adaptee to the Target interface.

v Collaborations

. Clients call operations on an Adapter instance. In turn, the adapter calls Adaptee operations that carry out
the request.

v Consequences

Class and object adapters have different trade-offs. A class adapter

. adapts Adaptee to Target by committing to a concrete Adapter class. As a consequence, a class adapter

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4afs.htm (3 of 10) [21/08/2002 19:11:36]

Adapter

won't work when we want to adapt a class and all its subclasses.
. lets Adapter override some of Adaptee's behavior, since Adapter is a subclass of Adaptee.
. introduces only one object, and no additional pointer indirection is needed to get to the adaptee.
An object adapter

. letsasingle Adapter work with many Adaptees—that is, the Adaptee itself and all of its subclasses (if
any). The Adapter can also add functionality to all Adaptees at once.

. makesit harder to override Adaptee behavior. It will require subclassing Adaptee and making Adapter
refer to the subclass rather than the Adaptee itself.

Here are other issues to consider when using the Adapter pattern:

1. How much adapting does Adapter do? Adapters vary in the amount of work they do to adapt Adapteeto
the Target interface. There is a spectrum of possible work, from simple interface conversion—for
example, changing the names of operations—to supporting an entirely different set of operations. The
amount of work Adapter does depends on how similar the Target interface is to Adaptee's.

2. Pluggable adapters. A classis more reusable when you minimize the assumptions other classes must
make to use it. By building interface adaptation into a class, you eliminate the assumption that other
classes see the same interface. Put another way, interface adaptation lets us incorporate our classinto
existing systems that might expect different interfaces to the class. ObjectWorks\Smalltalk [Par90] uses

the term pluggable adapter to describe classes with built-in interface adaptation.

Consider a TreeDisplay widget that can display tree structures graphically. If this were a special-purpose
widget for usein just one application, then we might require the objects that it displays to have a specific
interface; that is, all must descend from a Tree abstract class. But if we wanted to make TreeDisplay
more reusable (say we wanted to make it part of atoolkit of useful widgets), then that requirement would
be unreasonable. Applications will define their own classes for tree structures. They shouldn't be forced
to use our Tree abstract class. Different tree structures will have different interfaces.

In adirectory hierarchy, for example, children might be accessed with a GetSubdirectories operation,
whereas in an inheritance hierarchy, the corresponding operation might be called GetSubclasses. A
reusable TreeDisplay widget must be able to display both kinds of hierarchies even if they use different
interfaces. In other words, the TreeDisplay should have interface adaptation built into it.

Well look at different ways to build interface adaptation into classes in the Implementation section.

3. Using two-way adaptersto provide transparency. A potential problem with adaptersisthat they aren't
transparent to all clients. An adapted object no longer conforms to the Adaptee interface, so it can't be
used as iswherever an Adaptee object can. Two-way adapter s can provide such transparency.
Specifically, they're useful when two different clients need to view an object differently.

Consider the two-way adapter that integrates Unidraw, a graphical editor framework [VL90], and QOCA,
a constraint-solving toolkit [HHMV 92]. Both systems have classes that represent variables explicitly:
Unidraw has StateVariable, and QOCA has ConstraintVariable. To make Unidraw work with QOCA,
ConstraintVariable must be adapted to StateVariable; to let QOCA propagate solutions to Unidraw,
StateV ariable must be adapted to ConstraintVariable.

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4afs.htm (4 of 10) [21/08/2002 19:11:36]

Adapter

{to QOCA class hierarchy) (to Unidraw class hierarchy)
| |
| |
ConstraintVariable StateVariable
ConstraintStateVariable

The solution involves a two-way class adapter ConstraintStateV ariable, a subclass of both StateVariable
and ConstraintVariable, that adapts the two interfaces to each other. Multiple inheritanceisaviable
solution in this case because the interfaces of the adapted classes are substantially different. The two-way
class adapter conforms to both of the adapted classes and can work in either system.

v Implementation

Although the implementation of Adapter isusually straightforward, here are some issues to keep in mind:

1. Implementing class adaptersin C++. In a C++ implementation of a class adapter, Adapter would inherit
publicly from Target and privately from Adaptee. Thus Adapter would be a subtype of Target but not of
Adaptee.

2. Pluggable adapters. Let'slook at three ways to implement pluggable adapters for the TreeDisplay widget
described earlier, which can lay out and display a hierarchical structure automatically.

Thefirst step, which is common to all three of the implementations discussed here, isto find a"narrow"
interface for Adaptee, that is, the smallest subset of operations that lets us do the adaptation. A narrow
interface consisting of only a couple of operations is easier to adapt than an interface with dozens of
operations. For TreeDisplay, the adaptee is any hierarchical structure. A minimalist interface might
include two operations, one that defines how to present a node in the hierarchical structure graphically,
and another that retrieves the node's children.

The narrow interface leads to three implementation approaches:

a. Using abstract operations. Define corresponding abstract operations for the narrow Adaptee
interface in the TreeDisplay class. Subclasses must implement the abstract operations and adapt
the hierarchically structured object. For example, a DirectoryTreeDisplay subclass will implement
these operations by accessing the directory structure.

Treeisplay (Client, Target)

Getihildren(Node)

CreateGraphicNode(Nade) GetChildren(n) o

Display() for each child

BulldTree(Mode nj & ------—--F——=-—--——1 AddGraphicMode|{CreateGraphicMode{child))
Z‘& Build Tree(child)

Directory TreeDisplay {Adapter)

GetChildren[MNodea)

CreateGraphicNodelNode) 4|-| FileSystemEntity [Adaptee)

DirectoryTreeDisplay specializes the narrow interface so that it can display directory structures

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4afs.htm (5 of 10) [21/08/2002 19:11:36]

Adapter

made up of FileSystemEntity objects.

b. Using delegate objects. In this approach, TreeDisplay forwards requests for accessing the
hierarchical structure to adelegate object. TreeDisplay can use a different adaptation strategy by
substituting a different delegate.

For example, suppose there exists a DirectoryBrowser that uses a TreeDisplay. DirectoryBrowser
might make a good delegate for adapting TreeDisplay to the hierarchical directory structure. In
dynamically typed languages like Smalltalk or Objective C, this approach only requires an
interface for registering the delegate with the adapter. Then TreeDisplay simply forwards the
reguests to the delegate. NEXTSTEP [Add94] uses this approach heavily to reduce subclassing.

Statically typed languages like C++ require an explicit interface definition for the delegate. We
can specify such an interface by putting the narrow interface that TreeDisplay requiresinto an
abstract TreeAccessorDelegate class. Then we can mix this interface into the delegate of our
choice—DirectoryBrowser in this case—using inheritance. We use single inheritance if the
DirectoryBrowser has no existing parent class, multiple inheritance if it does. Mixing classes
together like thisis easier than introducing a new TreeDisplay subclass and implementing its
operationsindividualy.

TreedccessorDelagate (Target)

- : delegate GetChiidren(Treelisplay, Node)
TreeDisplay (Llient} ™ CreateGraphicNode| TreeDispiay, Node)
SetDelegated Delegate)

Diisplay(
g DirectoryBrowser {Adapter)

GetChildren(Treelisplay. Node)
CreateGraphicMode! TreeDisplay, Mode)
CreateFile()

= DeleteFile()

BuildTreg{Node n)
I
|
1
T
1
1
1
1

delegate—=GetChildren(this, n)
for each chitd {
AddGraphicMode]
delegate—=CreateGraphicMode(this, child)

1
} BulidTres(child)

—>o| FileSystemEntity {Adaptes)

c. Parameterized adapters. The usual way to support pluggable adaptersin Smalltalk isto
parameterize an adapter with one or more blocks. The block construct supports adaptation without
subclassing. A block can adapt a request, and the adapter can store a block for each individual
reguest. In our example, this means TreeDisplay stores one block for converting anodeinto a
GraphicNode and another block for accessing a node's children.

For example, to create TreeDisplay on adirectory hierarchy, we write

directoryDisplay : =
(TreeDi splay on: treeRoot)
get Chi | drenBl ock:
[:node | node get Subdirectories]
cr eat eG aphi cNodeBl ock:
[:node | node createG aphi cNode].

If you're building interface adaptation into a class, this approach offers a convenient alternative to
subclassing.

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4afs.htm (6 of 10) [21/08/2002 19:11:36]

Adapter

v Sample Code

WEe'll give a brief sketch of the implementation of class and object adapters for the Motivation example
beginning with the classes Shape and Text Vi ew.

cl ass Shape {
publi c:
Shape() ;
virtual void Boundi ngBox(
Poi nt & bottonlLeft, Point& topR ght
) const;
vi rtual Mani pul ator* CreateMani pul ator() const;

b

class TextView {
publi c:
Text View();
void GetOrigin(Coord& x, Coord& y) const;
voi d Get Ext ent (Coord& wi dt h, Coord& hei ght) const;
virtual bool |sEnmpty() const;

b

Shape assumes a bounding box defined by its opposing corners. In contrast, Text Vi ewis defined by an
origin, height, and width. Shape also definesa Cr eat eMani pul at or operation for creating a

Mani pul at or object, which knows how to animate a shape when the user manipulatesit.L Text Vi ewhasno
equivalent operation. The class Text Shape isan adapter between these different interfaces.

A class adapter uses multiple inheritance to adapt interfaces. The key to class adapters isto use one inheritance
branch to inherit the interface and another branch to inherit the implementation. The usual way to make this
distinction in C++ isto inherit the interface publicly and inherit the implementation privately. Well use this
convention to define the Text Shape adapter.

cl ass Text Shape : public Shape, private Text Vi ew {
public:
Text Shape() ;

virtual void Boundi ngBox(
Poi nt & bottonmleft, Point& topRi ght
) const;
virtual bool |sEnmpty() const;
virtual Mani pul ator* CreateMani pul ator() const;

b
The Boundi ngBox operation converts Text Vi ews interface to conform to Shape's.

voi d Text Shape: : Boundi ngBox (

Poi nt & bottomLeft, Pointé& topRi ght
) const {

Coord bottom left, w dth, height;

GetOrigin(bottom left);
Get Ext ent (wi dt h, hei ght);

bottomLeft = Point(bottom left);
topRi ght = Point(bottom + height, left + w dth);

}

Thel sEnpt y operation demonstrates the direct forwarding of requests common in adapter implementations:

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4afs.htm (7 of 10) [21/08/2002 19:11:36]

Adapter

bool Text Shape::IskEnpty () const {
return TextView :|sEmpty();

}

Finally, we define Cr eat eMani pul at or (whichisn't supported by Text Vi ew) from scratch. Assume we've
already implemented a Text Mani pul at or class that supports manipulation of a Text Shape.

Mani pul at or* Text Shape: : Creat eMani pul ator () const {
return new Text Mani pul ator(this);
}

The object adapter uses object composition to combine classes with different interfaces. In this approach, the
adapter Text Shape maintains a pointer to Text Vi ew.

cl ass Text Shape : public Shape {
public:
Text Shape(Text Vi ew*) ;

virtual void Boundi ngBox(
Poi nt & bottonleft, Point& topRi ght
) const;
virtual bool IsEnmpty() const;
virtual Mani pul ator* CreateMani pul ator() const;
private:
Text Vi ew* _text;

b

Text Shape must initialize the pointer to the Text Vi ewinstance, and it does so in the constructor. It must
aso call operations on its Text Vi ew object whenever its own operations are called. In this example, assume
that the client createsthe Text Vi ewobject and passesit to the Text Shape constructor:

Text Shape: : Text Shape (TextView t) {
_text = t;
}

voi d Text Shape: : Boundi ngBox (

Poi nt & bottomLeft, Pointé& topRi ght
) const {

Coord bottom left, width, height;

_text->GetOrigin(bottom left);
_text->Cet Extent (wi dth, height);

bottomLeft = Point(bottom left);
topRi ght = Point(bottom + height, left + width);
}

bool Text Shape::I1sEnpty () const {
return _text->IsEnpty();

}

Cr eat eMani pul at or 'simplementation doesn't change from the class adapter version, since it's implemented
from scratch and doesn't reuse any existing Text Vi ewfunctionality.

Mani pul at or* Text Shape: : Creat eMani pul ator () const {
return new Text Mani pul ator (this);

}

Compare this code to the class adapter case. The object adapter requires a little more effort to write, but it's more

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4afs.htm (8 of 10) [21/08/2002 19:11:36]

Adapter

flexible. For example, the object adapter version of Text Shape will work equally well with subclasses of
Text Vi ew—the client simply passes an instance of a Text Vi ewsubclassto the Text Shape constructor.

* Known Uses

The Moativation example comes from ET++Draw, a drawing application based on ET++ [WGM88]. ET++Draw
reuses the ET++ classes for text editing by using a TextShape adapter class.

InterViews 2.6 defines an Interactor abstract class for user interface elements such as scroll bars, buttons, and
menus [VL88]. It aso defines a Graphic abstract class for structured graphic objects such aslines, circles,
polygons, and splines. Both Interactors and Graphics have graphical appearances, but they have different
interfaces and implementations (they share no common parent class) and are therefore incompatible—you can't
embed a structured graphic object in, say, adialog box directly.

Instead, InterViews 2.6 defines an object adapter called GraphicBlock, a subclass of Interactor that contains a
Graphic instance. The GraphicBlock adapts the interface of the Graphic class to that of Interactor. The
GraphicBlock lets a Graphic instance be displayed, scrolled, and zoomed within an Interactor structure.

Pluggabl e adapters are common in ObjectWorks\Smalltalk [Par90]. Standard Smalltalk defines a VaueModel
classfor views that display asingle value. ValueModel definesaval ue, val ue: interface for accessing the
value. These are abstract methods. Application writers access the value with more domain-specific names like
wi dt h andwi dt h: , but they shouldn't have to subclass ValueModel to adapt such application-specific names
to the ValueModel interface.

Instead, ObjectWorks\Smalltalk includes a subclass of ValueModel called PluggableAdaptor. A
PluggableAdaptor object adapts other objects to the VaueMode interface (val ue, val ue:). It can be
parameterized with blocks for getting and setting the desired value. PluggableAdaptor uses these blocks
internally to implement theval ue, val ue: interface. PluggableAdaptor also lets you passin the selector
names (e.g., W dt h, wi dt h:) directly for syntactic convenience. It converts these selectorsinto the
corresponding blocks automatically.

ValueMode!

value;
valleg

f#

PluggableAdaptor

adapies

value:
valug - -=-==- =1 == -1 " getBlock value: adaptee

petBiock
setBlock

Another example from ObjectWorks\Smalltalk is the TableAdaptor class. A TableAdaptor can adapt a sequence
of objectsto atabular presentation. The table displays one object per row. The client parameterizes
TableAdaptor with the set of messages that a table can use to get the column values from an object.

Some classesin NeXT's AppKit [Add94] use delegate objects to perform interface adaptation. An exampleisthe

NXBrowser class that can display hierarchical lists of data. NXBrowser uses a delegate object for accessing and
adapting the data.

Meyer's "Marriage of Convenience" [Mey88] isaform of class adapter. Meyer describes how a FixedStack class

adapts the implementation of an Array classto the interface of a Stack class. The result is a stack containing a
fixed number of entries.

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4afs.htm (9 of 10) [21/08/2002 19:11:36]

Adapter

v Related Patterns

Bridge (151) has a structure similar to an object adapter, but Bridge has a different intent: It is meant to separate

an interface from its implementation so that they can be varied easily and independently. An adapter is meant to
change the interface of an existing object.

Decorator (175) enhances another abject without changing itsinterface. A decorator is thus more transparent to

the application than an adapter is. As a consequence, Decorator supports recursive composition, which isn't
possible with pure adapters.

Proxy (207) defines a representative or surrogate for another object and does not change its interface.
A

p» Bridge
4 Structural Patterns

1Cr eat eMani pul at or isan example of a Factory Method (107).

y

Abstract Factory = Adapter » Bridge » Builder » Chain of Responsibility « Command » Composite »
Decorator » Facade * Factory Method + Flyweight = Interpreter = lterator = Mediator + Memento =
Observer * Prototype * Proxy + Singleton * State + Strategy * Template Method + Visitor

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4afs.htm (10 of 10) [21/08/2002 19:11:36]

Bridge

©

SEARCH

Intent

Also Known As
Motivation
Applicability
Structure
Participants
Collaborations
Consequences
Implementation
Sample Code
Known Uses
Related Patterns

Pattern Catalog | Conclusion

Case Study

Object Structural

| Contents |Gui|:|ct::- Hnﬂdu5| Glossary | Notation | Foundation | Bibliography | Index | Pattern Map |

* Intent

Decouple an abstraction from its implementation so that the two can vary independently.

v Also Known AS

Handle/Body

v Motivation

When an abstraction can have one of several possible implementations, the usual way to accommodate them isto
use inheritance. An abstract class defines the interface to the abstraction, and concrete subclasses implement it in
different ways. But this approach isn't dways flexible enough. Inheritance binds an implementation to the
abstraction permanently, which makes it difficult to modify, extend, and reuse abstractions and implementations
independently.

Consider the implementation of a portable Window abstraction in auser interface toolkit. This abstraction should
enable us to write applications that work on both the X Window System and IBM's Presentation Manager (PM), for
example. Using inheritance, we could define an abstract class Window and subclasses XWindow and PMWindow
that implement the Window interface for the different platforms. But this approach has two drawbacks:

1. It'sinconvenient to extend the Window abstraction to cover different kinds of windows or new platforms.
Imagine an lconWindow subclass of Window that specializes the Window abstraction for icons. To support
IconWindows for both platforms, we have to implement two new classes, XIconWindow and
PMIconWindow. Worse, we'll have to define two classes for every kind of window. Supporting a third
platform requires yet another new Window subclass for every kind of window.

Window

| A | |

| XWindow | |PMWindow| | lconWindow |

I /K |

| XiconWindow | [PMiconWindow |

Window

| XWindow | |PMWindow|

2. It makes client code platform-dependent. Whenever a client creates a window, it instantiates a concrete class
that has a specific implementation. For example, creating an XWindow object binds the Window abstraction
to the X Window implementation, which makes the client code dependent on the X Window
implementation. This, in turn, makes it harder to port the client code to other platforms.

Clients should be able to create a window without committing to a concrete implementation. Only the
window implementation should depend on the platform on which the application runs. Therefore client code
should instantiate windows without mentioning specific platforms.

The Bridge pattern addresses these problems by putting the Window abstraction and itsimplementation in separate
class hierarchies. Thereis one class hierarchy for window interfaces (Window, |conWindow, TransientWindow)
and a separate hierarchy for platform-specific window implementations, with Windowlmp asitsroot. The

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4bfs.htm (1 of 9) [21/08/2002 19:12:36]

javascript:loadApplet()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4b.htm#relatedpatterns
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4b.htm#knownuses
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4b.htm#samplecode
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4b.htm#implementation
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4b.htm#consequences
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4b.htm#collaborations
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4b.htm#participants
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4b.htm#structure
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4b.htm#applicability
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4b.htm#motivation
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4b.htm#alsoknownas
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4b.htm#intent
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/helpfs.htm
javascript:build()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/patcafs.htm

Bridge

XWindowImp subclass, for example, provides an implementation based on the X Window System.

iy
Window - i ™ Windowlmp
DrawText() Devlraw Text))
DrawRect() o F DevDrawlinal}
1
i
|
| imp—:-DEuDrawLinEE]h‘
__ | imp==DevDrawline)
imp—}DauDralena%]
imp—=DevDrawline)
| | | I
lconWindow TransientWindow EWindowlmp PMWindowlimp
DrawBorder(} ¢ Draw(iloseBox(} ¢ DevDrawText() D—---: DevDrawline()
: : DevDrawLing{} ¢ + | DevDrawText()
; ; |
DrawRsct() Y) o N
DrawText() DrawRect() KDrawlinz) XDrawString)

All operations on Window subclasses are implemented in terms of abstract operations from the Windowlmp
interface. This decouples the window abstractions from the various platform-specific implementations. We refer to
the relationship between Window and Windowlmp as a bridge, because it bridges the abstraction and its
implementation, letting them vary independently.

v Applicability
Use the Bridge pattern when

. you want to avoid a permanent binding between an abstraction and its implementation. This might be the
case, for example, when the implementation must be selected or switched at run-time.

. both the abstractions and their implementations should be extensible by subclassing. In this case, the Bridge
pattern lets you combine the different abstractions and implementations and extend them independently.

. changes in the implementation of an abstraction should have no impact on clients; that is, their code should
not have to be recompiled.

. (C++) you want to hide the implementation of an abstraction completely from clients. In C++ the
representation of aclassisvisiblein the class interface.

. you have aproliferation of classes as shown earlier in the first Motivation diagram. Such a class hierarchy
indicates the need for splitting an object into two parts. Rumbaugh uses the term "nested generalizations'
[RBP+91] to refer to such class hierarchies.

. you want to share an implementation among multiple objects (perhaps using reference counting), and this
fact should be hidden from the client. A simple exampleis Coplien's String class [Cop92], in which multiple

objects can share the same string representation (StringRep).

v Structure

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4bfs.htm (2 of 9) [21/08/2002 19:12:36]

Bridge

im
! Abstraction A P e implementor

Operation{} 3 Cparationimpy)

L ___ | imp-=Oparationimp(};

Concretelmplementora ConcretelmplementorB

RefinedAbstraction

Operationtmg() Orperationtmg)

¥ Participants

Abstraction (Window)

o defines the abstraction's interface.

o maintains areference to an object of type Implementor.
RefinedAbstraction (IconWindow)

o Extends the interface defined by Abstraction.
Implementor (WindowImp)

o defines the interface for implementation classes. Thisinterface doesn't have to correspond exactly to
Abstraction's interface; in fact the two interfaces can be quite different. Typically the Implementor
interface provides only primitive operations, and Abstraction defines higher-level operations based
on these primitives.

Concretel mplementor (XWindowImp, PMWindowlImp)

o implements the Implementor interface and defines its concrete implementation.

v Collaborations

. Abstraction forwards client requests to its Implementor object.

v Consequences

The Bridge pattern has the following consequences:

1. Decoupling interface and implementation. An implementation is not bound permanently to an interface. The

implementation of an abstraction can be configured at run-time. It's even possible for an object to change its
implementation at run-time.

Decoupling Abstraction and Implementor a so eliminates compile-time dependencies on the
implementation. Changing an implementation class doesn't require recompiling the Abstraction class and its
clients. This property is essential when you must ensure binary compatibility between different versions of a
classlibrary.

Furthermore, this decoupling encourages layering that can lead to a better-structured system. The high-level

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4bfs.htm (3 of 9) [21/08/2002 19:12:36]

Bridge

part of asystem only has to know about Abstraction and Implementor.
2. Improved extensibility. Y ou can extend the Abstraction and Implementor hierarchies independently.

3. Hiding implementation details from clients. Y ou can shield clients from implementation details, like the
sharing of implementor objects and the accompanying reference count mechanism (if any).

v Implementation

Consider the following implementation issues when applying the Bridge pattern:

1. Only one Implementor. In situations where there's only one implementation, creating an abstract
Implementor classisn't necessary. Thisis a degenerate case of the Bridge pattern; there's a one-to-one
relationship between Abstraction and Implementor. Nevertheless, this separation is still useful when a
change in the implementation of a class must not affect its existing clients—that is, they shouldn't have to be
recompiled, just relinked.

Carolan [Car89] uses the term "Cheshire Cat" to describe this separation. In C++, the classinterface of the

Implementor class can be defined in a private header file that isn't provided to clients. Thislets you hide an
implementation of a class completely from its clients.

2. Creating the right Implementor object. How, when, and where do you decide which Implementor classto
instantiate when there's more than one?

If Abstraction knows about all Concretel mplementor classes, then it can instantiate one of theminiits
constructor; it can decide between them based on parameters passed to its constructor. If, for example, a
collection class supports multiple implementations, the decision can be based on the size of the collection. A
linked list implementation can be used for small collections and a hash table for larger ones.

Another approach isto choose a default implementation initially and change it later according to usage. For
example, if the collection grows bigger than a certain threshold, then it switches its implementation to one
that's more appropriate for alarge number of items.

It's also possible to delegate the decision to another object altogether. In the Window/Windowl mp example,
we can introduce a factory object (see Abstract Factory (87)) whose sole duty is to encapsul ate platform-
specifics. The factory knows what kind of WindowlImp object to create for the platform in use; a Window
simply asksit for a Windowlmp, and it returns the right kind. A benefit of this approach is that Abstraction
is not coupled directly to any of the Implementor classes.

3. Sharing implementors. Coplien illustrates how the Handle/Body idiom in C++ can be used to share
implementations among several objects [Cop92]. The Body stores a reference count that the Handle class

increments and decrements. The code for assigning handles with shared bodies has the following general
form:

Handl e& Handl e: : operator= (const Handl e& other) {
ot her. _body->Ref ();
_body->Unref();

if (_body->RefCount() == 0) {
del et e _body;

}
_body = other._body;

return *this;

}

4. Using multiple inheritance. Y ou can use multiple inheritance in C++ to combine an interface with its
implementation [Mar91]. For example, aclass can inherit publicly from Abstraction and privately from a
Concretel mplementor. But because this approach relies on static inheritance, it binds an implementation

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4bfs.htm (4 of 9) [21/08/2002 19:12:36]

Bridge

permanently to its interface. Therefore you can't implement a true Bridge with multiple inheritance—at least
not in C++.

v Sample Code

The following C++ code implements the Window/WindowImp example from the Motivation section. The W ndow
class defines the window abstraction for client applications:

cl ass W ndow {
public:
W ndow(Vi ew* contents);

/1 requests handl ed by w ndow
virtual void DrawContents();

virtual void Open();
virtual void Cose();
virtual void lconify();
virtual void Deiconify();

/1 requests forwarded to inplenentation
virtual void SetOrigin(const Point& at);
virtual void SetExtent(const Point& extent);
virtual void Raise();

virtual void Lower();

virtual void DrawLi ne(const Pointé& const Point&);
virtual void DrawRect (const Pointé& const Point&);
virtual void DrawPol ygon(const Point[], int n);
virtual void DrawText (const char*, const Point&);

prot ect ed:
W ndow mp* Get W ndow np() ;
Vi ew GetView);

private:
W ndow np* i np;
View _contents; // the window s contents

s

W ndow maintains areferenceto aW ndowl np, the abstract class that declares an interface to the underlying
windowing system.

cl ass W ndow np {
public:
virtual void InmpTop() = O;
virtual void ImpBottom() = O;
virtual void I nmpSet Extent(const Point&)
virtual void InmpSetOrigin(const Point&)

0;
0;

virtual void DeviceRect(Coord, Coord, Coord, Coord) = O;
virtual void DeviceText(const char*, Coord, Coord) = O;

virtual void DeviceBitnmap(const char*, Coord, Coord) 0;
/'l lots nore functions for drawi ng on w ndows. ..

pr ot ect ed:
W ndowl mp() ;

}

Subclasses of W ndow define the different kinds of windows the application might use, such as application
windows, icons, transient windows for dialogs, floating palettes of tools, and so on.

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4bfs.htm (5 of 9) [21/08/2002 19:12:36]

Bridge

For example, Appl i cat i onW ndowwill implement Dr awCont ent s to draw the Vi ewinstanceit stores:

class Applicati onWndow : public Wndow {
public:

...

virtual void DrawContents();

s

voi d Applicati onW ndow. : DrawContents () {
Get Vi ew() - >DrawOn(this);
}

| conW ndow stores the name of a bitmap for theicon it displays...

class I conWndow : public Wndow {

public:

...

virtual void DrawContents();
private:

const char* _bitnmapNane;

b
...and it implements Dr awCont ent s to draw the bitmap on the window:

voi d | conW ndow: : DrawContent s() {
W ndowl mp* inmp = Get Wndowl np() ;
if (imp !'=0) {
i mp->Devi ceBi t map(_bi t mapNane, 0.0, 0.0);
}

}

Many other variations of W ndow are possible. A Tr ansi ent W ndow may need to communicate with the
window that created it during the dialog; hence it keeps areference to that window. A Pal et t eW ndow always
floats above other windows. An | conDockW ndowholds | conW ndows and arranges them neatly.

W ndow operations are defined in terms of the W ndowl np interface. For example, Dr awRect extracts four
coordinates from itstwo Poi nt parameters before calling the W ndowl np operation that draws the rectanglein
the window:

voi d W ndow: : DrawRect (const Point& pl, const Point& p2) {
W ndowl mp* inmp = Get Wndowl np() ;
i mp->Devi ceRect (pl. X(), pl.Y(), p2.X(), p2.Y());

}

Concrete subclasses of W ndowl np support different window systems. The XW ndowl np subclass supports the
X Window System:

class XWndowl np : public Wndow np {
public:
XW ndowl np() ;

virtual void DeviceRect(Coord, Coord, Coord, Coord);
/1 remainder of public interface...

private:
/1 lots of X window systemspecific state, including:
Di splay* _dpy;
Drawable winid; // windowid
GC _gc; /1 wi ndow graphi c cont ext

s

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4bfs.htm (6 of 9) [21/08/2002 19:12:36]

Bridge

For Presentation Manager (PM), we define a PMAF ndowl np class:

cl ass PMW ndowi np : public Wndow mp {
public:
PMW ndowl np() ;
virtual void DeviceRect(Coord, Coord, Coord, Coord);

/1 remainder of public interface...

private:
/1 lots of PMw ndow system specific state, including:
HPS _hps;

i

These subclasses implement W ndowl np operations in terms of window system primitives. For example,
Devi ceRect isimplemented for X asfollows:

voi d XW ndowl np: : Devi ceRect (
Coord x0, Coord y0, Coord x1, Coord yl

) A

int x = round(m n(x0, x1));

int y = round(mn(y0, yl));

int w= round(abs(x0 - x1));

int h = round(abs(y0 - y1));

XDr awRect angl e(_dpy, _winid, _gc, x, y, w, h);
}

The PM implementation might look like this:

voi d PMW ndowl np: : Devi ceRect (
Coord x0, Coord y0, Coord x1, Coord yl

) A

Coord left = mn(x0, x1);

Coord right = max(x0, x1);

Coord bottom = min(y0, yl);

Coord top = max(y0, yl);

PPO NTL point[4];

point[0].x = left; point[0].y = top;

point[1].x = right; point[1].y = top;

point[2].x = right; point[2].y = bottom

point[3].x = left; point[3].y = bottom

if (
(Gpi Begi nPat h(_hps, 1L) == false) ||
(Gpi Set Current Posi tion(_hps, &point[3]) == false) ||
(Gpi Pol yLi ne(_hps, 4L, point) == Gl _ERROR) ||
(Gpi EndPat h(_hps) == fal se)

) A
/] report error

} else {
Gpi St rokePat h(_hps, 1L, OL);

}

}

How does awindow obtain an instance of the right W ndowl np subclass? We'll assume W ndow has that
responsibility in this example. Its Get W ndowl np operation gets the right instance from an abstract factory (see
Abstract Factory (87)) that effectively encapsulates all window system specifics.

W ndow np* W ndow: : Get W ndowl mp () {

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4bfs.htm (7 of 9) [21/08/2002 19:12:36]

Bridge

if (Linmp == 0) {
_inp = WndowSyst enfactory: : | nstance() - >MakeW ndow np() ;
}

return _inp;

}

W ndowSyst enfact ory: : | nst ance() returns an abstract factory that manufactures all window system-
specific objects. For simplicity, we've made it a Singleton (127) and have let the W ndow class access the factory
directly.

* Known Uses

The Window example above comes from ET++ [WGM88]. In ET++, Windowlmp is called "WindowPort" and has
subclasses such as XWindowPort and SunWindowPort. The Window object creates its corresponding I mplementor
object by requesting it from an abstract factory called "WindowSystem." WindowSystem provides an interface for
creating platform-specific objects such as fonts, cursors, bitmaps, and so forth.

The ET++ Window/WindowPort design extends the Bridge pattern in that the WindowPort also keeps a reference
back to the Window. The WindowPort implementor class uses this reference to notify Window about WindowPort-
specific events: the arrival of input events, window resizes, etc.

Both Coplien [Cop92] and Stroustrup [Str91] mention Handle classes and give some examples. Their examples

emphasize memory management issues like sharing string representations and support for variable-sized objects.
Our focus is more on supporting independent extension of both an abstraction and its implementation.

libg++ [Lea88] defines classes that implement common data structures, such as Set, LinkedSet, HashSet,
LinkedList, and HashTable. Set is an abstract class that defines a set abstraction, while LinkedList and HashTable
are concrete implementors for alinked list and a hash table, respectively. LinkedSet and HashSet are Set
implementors that bridge between Set and their concrete counterparts LinkedList and HashTable. Thisis an
example of adegenerate bridge, because there's no abstract Implementor class.

NeXT's AppKit [Add94] uses the Bridge pattern in the implementation and display of graphical images. Animage
can be represented in several different ways. The optimal display of an image depends on the properties of a
display device, specifically its color capabilities and its resolution. Without help from AppKit, developers would
have to determine which implementation to use under various circumstances in every application.

To relieve developers of this responsibility, AppKit provides an NXImage/NXImageRep bridge. NXImage defines
the interface for handling images. The implementation of imagesis defined in a separate NXImageRep class
hierarchy having subclasses such as NXEPSImageRep, NX Cachedl mageRep, and NXBitMaplmageRep. NXImage
maintains a reference to one or more NXImageRep objects. If there is more than one image implementation, then
NXImage sel ects the most appropriate one for the current display device. NXImage is even capable of converting
one implementation to another if necessary. The interesting aspect of this Bridge variant is that NXImage can store
more than one NXImageRep implementation at atime.

v Related Patterns

An Abstract Factory (87) can create and configure a particular Bridge.

The Adapter (139) pattern is geared toward making unrelated classes work together. It isusually applied to systems
after they're designed. Bridge, on the other hand, is used up-front in adesign to let abstractions and
implementations vary independently.

A
» Composite
4 Adapter

y

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4bfs.htm (8 of 9) [21/08/2002 19:12:36]

Bridge

Abstract Factory = Adapter = Eridos » Builder « Chain of Responsibility « Command = Composite =
Decorator = Facade = Factory Method « Flyweight = Interpreter * lterator = Mediator = Memento *
Cbserver = Prototype + Proxy + Singleton + State = Strategy + Template Method + Visitor

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4bfs.htm (9 of 9) [21/08/2002 19:12:36]

Composite

©

SEARCGH

Intent
Motivation
Applicability
Structure
Participants
Collaborations
Consequences
Implementation
Sample Code
Known Uses
Related Patterns

Help | Intro | Case Study | Pattern Catalog | Conclusion

Composite Object Structural

| Contents |Guide to Readers | Glossary | Notation | Foundation | Bibliography | Index | Pattern Map |

v Intent

Compose objects into tree structures to represent part-whole hierarchies. Composite lets clients treat
individual objects and compositions of objects uniformly.

* Motivation

Graphics applications like drawing editors and schematic capture systems let users build complex diagrams
out of simple components. The user can group components to form larger components, which in turn can be
grouped to form still larger components. A simple implementation could define classes for graphical
primitives such as Text and Lines plus other classes that act as containers for these primitives.

But there's a problem with this approach: Code that uses these classes must treat primitive and container
objects differently, even if most of the time the user treats them identically. Having to distinguish these
objects makes the application more complex. The Composite pattern describes how to use recursive
composition so that clients don't have to make this distinction.

Graphic [

Draw(}
Add{Graphic)
Femove{Graphic)
Getlhid{ing)

A

graphics
Line Rectangle Text Picture o
Draw() Drawi{) Draw() Draw() C-—-—--—F-—————------ fﬂ“"‘}f in graphics "
Add{Graphic g) o-F----- | g-Draw(}
Remove{Graphic) |
GetChild(int] L] add gto list of graphics

The key to the Composite pattern is an abstract class that represents both primitives and their containers.
For the graphics system, this class is Graphic. Graphic declares operations like Draw that are specific to
graphical objects. It also declares operations that all composite objects share, such as operations for
accessing and managing its children.

The subclasses Line, Rectangle, and Text (see preceding class diagram) define primitive graphical objects.
These classes implement Draw to draw lines, rectangles, and text, respectively. Since primitive graphics
have no child graphics, none of these subclasses implements child-related operations.

The Picture class defines an aggregate of Graphic objects. Picture implements Draw to call Draw on its
children, and it implements child-related operations accordingly. Because the Picture interface conforms to
the Graphic interface, Picture objects can compose other Pictures recursively.

The following diagram shows atypical composite object structure of recursively composed Graphic objects:

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4cfs.htm (1 of 10) [21/08/2002 19:12:56]

javascript:loadApplet()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4c.htm#relatedpatterns
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4c.htm#knownuses
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4c.htm#samplecode
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4c.htm#implementation
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4c.htm#consequences
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4c.htm#collaborations
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4c.htm#participants
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4c.htm#structure
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4c.htm#applicability
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4c.htm#motivation
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4c.htm#intent
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/helpfs.htm
javascript:build()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/patcafs.htm

Composite

aPicture

aPicture

(et)

[aText

v Applicability
Use the Composite pattern when
. you want to represent part-whole hierarchies of objects.

. you want clients to be able to ignore the difference between compositions of objects and individual
objects. Clientswill treat all objects in the composite structure uniformly.

v Structure

Client |———pel Componsnt l....

Oparaiiony}

Adai Companant)
Ramova{Campanani)
GatChildyint)

A

| | childran
Leaf Composite o

=

Operation() Operation{} S------F-==-=----= '“rgfbgp:;‘r;’,',-‘.':'ﬂﬁ“
Add{Component)
Famove(Componant)

GetChild{ing)

A typica Composite object structure might look like this:

aComposite

aComposite

Covont) (Coteat) { atont)

v Participants

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4cfs.htm (2 of 10) [21/08/2002 19:12:56]

Composite

. Component (Graphic)
o declaresthe interface for objects in the composition.
o implements default behavior for the interface common to al classes, as appropriate.
» declares an interface for accessing and managing its child components.

o (optional) defines an interface for accessing a component's parent in the recursive structure,
and implementsit if that's appropriate.

. Leaf (Rectangle, Line, Text, etc.)
o represents leaf objectsin the composition. A leaf has no children.
o defines behavior for primitive objects in the composition.
. Composite (Picture)
o defines behavior for components having children.
o stores child components.
o implements child-related operations in the Component interface.
. Client

o manipulates objects in the composition through the Component interface.

* Collaborations

. Clients use the Component class interface to interact with objects in the composite structure. If the
recipient is a Leaf, then the request is handled directly. If the recipient is a Composite, then it usually
forwards requests to its child components, possibly performing additional operations before and/or
after forwarding.

v Consequences

The Composite pattern

. defines class hierarchies consisting of primitive objects and composite objects. Primitive objects can
be composed into more complex objects, which in turn can be composed, and so on recursively.
Wherever client code expects a primitive object, it can also take a composite object.

. makesthe client simple. Clients can treat composite structures and individual objects uniformly.
Clients normally don't know (and shouldn't care) whether they're dealing with aleaf or acomposite
component. This simplifies client code, because it avoids having to write tag-and-case-statement-
style functions over the classes that define the composition.

. makesit easier to add new kinds of components. Newly defined Composite or Leaf subclasses work
automatically with existing structures and client code. Clients don't have to be changed for new
Component classes.

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4cfs.htm (3 of 10) [21/08/2002 19:12:56]

Composite

. can make your design overly general. The disadvantage of making it easy to add new componentsis
that it makes it harder to restrict the components of a composite. Sometimes you want a composite to
have only certain components. With Composite, you can't rely on the type system to enforce those
constraints for you. You'll have to use run-time checks instead.

* Implementation

There are many issues to consider when implementing the Composite pattern:

1. Explicit parent references. Maintaining references from child components to their parent can
simplify the traversal and management of a composite structure. The parent reference ssimplifies
moving up the structure and deleting a component. Parent references also help support the Chain of
Responsibility (223) pattern.

The usua place to define the parent reference isin the Component class. Leaf and Composite classes
can inherit the reference and the operations that manage it.

With parent references, it's essential to maintain the invariant that al children of a composite have as
their parent the composite that in turn has them as children. The easiest way to ensure thisisto
change a component's parent only when it's being added or removed from a composite. If this can be
implemented once in the Add and Remove operations of the Composite class, then it can be inherited
by all the subclasses, and the invariant will be maintained automatically.

2. Sharing components. It's often useful to share components, for example, to reduce storage
requirements. But when a component can have no more than one parent, sharing components
becomes difficult.

A possible solution is for children to store multiple parents. But that can lead to ambiguities as a
reguest propagates up the structure. The Flyweight (195) pattern shows how to rework a design to
avoid storing parents altogether. It works in cases where children can avoid sending parent requests
by externalizing some or all of their state.

3. Maximizing the Component interface. One of the goals of the Composite pattern is to make clients
unaware of the specific Leaf or Composite classes they're using. To attain this goal, the Component
class should define as many common operations for Composite and Leaf classes as possible. The
Component class usually provides default implementations for these operations, and Leaf and
Composite subclasses will override them.

However, this goal will sometimes conflict with the principle of class hierarchy design that says a
class should only define operations that are meaningful to its subclasses. There are many operations
that Component supports that don't seem to make sense for Leaf classes. How can Component
provide a default implementation for them?

Sometimes alittle creativity shows how an operation that would appear to make sense only for
Composites can be implemented for all Components by moving it to the Component class. For
example, the interface for accessing children is afundamental part of a Composite class but not
necessarily Leaf classes. But if we view aLeaf asa Component that never has children, then we can
define a default operation for child access in the Component class that never returns any children.
Leaf classes can use the default implementation, but Composite classes will reimplement it to return
their children.

The child management operations are more troublesome and are discussed in the next item.

4. Declaring the child management operations. Although the Composite class implements the Add and
Remove operations for managing children, an important issue in the Composite pattern is which

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4cfs.htm (4 of 10) [21/08/2002 19:12:56]

Composite

classes declare these operations in the Composite class hierarchy. Should we declare these
operations in the Component and make them meaningful for Leaf classes, or should we declare and
define them only in Composite and its subclasses?

The decision involves a trade-off between safety and transparency:

o Defining the child management interface at the root of the class hierarchy gives you
transparency, because you can treat all components uniformly. It costs you safety, however,
because clients may try to do meaningless things like add and remove objects from leaves.

o Defining child management in the Composite class gives you safety, because any attempt to
add or remove objects from leaves will be caught at compile-timein astatically typed
language like C++. But you lose transparency, because leaves and composites have different
interfaces.

We have emphasized transparency over safety in this pattern. If you opt for safety, then at times you
may |ose type information and have to convert a component into a composite. How can you do this
without resorting to a type-unsafe cast?

One approach is to declare an operation Conposi t e* Get Conposi t e() inthe Component
class. Component provides a default operation that returns a null pointer. The Composite class
redefines this operation to return itself through thet hi s pointer:

cl ass Conposite;

cl ass Component {

publi c:
/...
virtual Conposite* GetConposite() { return 0; }
1
cl ass Conposite : public Component {
public:
voi d Add(Conponent *);
...
virtual Conposite* GetConposite() { return this; }
1
cl ass Leaf : public Conponent {
11
b

Get Conposi t e letsyou query acomponent to seeif it'sacomposite. Y ou can perform Add and
Renove safely on the composite it returns.

Conposi te* aConposite = new Conposite;
Leaf* aLeaf = new Leaf;

Conponent * aConponent ;
Conposite* test;

aConponent = aConposite,;

if (test = aConponent->CGet Conposite()) {
t est - >Add(new Leaf);
}

aConmponent = aleaf;

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4cfs.htm (5 of 10) [21/08/2002 19:12:56]

Composite

if (test = aComponent->Get Conposite()) {
test->Add(new Leaf); // wll not add | eaf
}

Similar tests for a Composite can be done using the C++ dynam c_cast construct.

Of course, the problem here is that we don't treat all components uniformly. We have to revert to
testing for different types before taking the appropriate action.

The only way to provide transparency is to define default Add and Renove operationsin
Component. That creates a new problem: There's no way to implement Conponent : : Add without
introducing the possibility of it failing. Y ou could make it do nothing, but that ignores an important
consideration; that is, an attempt to add something to a leaf probably indicates a bug. In that case, the
Add operation produces garbage. Y ou could make it delete its argument, but that might not be what
clients expect.

Usually it's better to make Add and Renove fail by default (perhaps by raising an exception) if the
component isn't allowed to have children or if the argument of Renove isn't achild of the
component, respectively.

Another alternative is to change the meaning of "remove" dlightly. If the component maintains a
parent reference, then we could redefine Conponent : : Renove to remove itself from its parent.
However, there still isn't ameaningful interpretation for a corresponding Add.

. Should Component implement a list of Components? Y ou might be tempted to define the set of

children as an instance variable in the Component class where the child access and management
operations are declared. But putting the child pointer in the base class incurs a space penalty for
every leaf, even though aleaf never has children. Thisisworthwhile only if there are relatively few
children in the structure.

. Child ordering. Many designs specify an ordering on the children of Composite. In the earlier

Graphics example, ordering may reflect front-to-back ordering. If Composites represent parse trees,
then compound statements can be instances of a Composite whose children must be ordered to
reflect the program.

When child ordering is an issue, you must design child access and management interfaces carefully
to manage the sequence of children. The Iterator (257) pattern can guide you in this.

. Caching to improve performance. If you need to traverse or search compositions frequently, the

Composite class can cache traversal or search information about its children. The Composite can
cache actual results or just information that lets it short-circuit the traversal or search. For example,
the Picture class from the Motivation example could cache the bounding box of its children. During
drawing or selection, this cached bounding box lets the Picture avoid drawing or searching when its
children aren't visible in the current window.

Changes to a component will require invalidating the caches of its parents. This works best when
components know their parents. So if you're using caching, you need to define an interface for telling
composites that their caches are invalid.

. Who should delete components? In languages without garbage collection, it's usually best to make a

Composite responsible for deleting its children when it's destroyed. An exception to thisrule iswhen
Leaf objects are immutable and thus can be shared.

. What's the best data structure for storing components? Composites may use a variety of data

structures to store their children, including linked lists, trees, arrays, and hash tables. The choice of
data structure depends (as always) on efficiency. In fact, it isn't even necessary to use a general-

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4cfs.htm (6 of 10) [21/08/2002 19:12:56]

Composite

Composite pattern.

publi c:
vi rt ual

vi rt ual
vi rtual
vi rt ual

vi rtual

vi rtual

vi rtual
pr ot ect ed:

private:

}s

over the empty set.

switches;

publi c:

vi rt ual

vi rtual
vi r t ual
vi rtual

Hs

of Equi pnent .

publi c:

purpose data structure at all. Sometimes composites have a variable for each child, although this
requires each subclass of Composite to implement its own management interface. See Interpreter

(243) for an example.

v Sample Code

Equipment such as computers and stereo components are often organized into part-whole or containment
hierarchies. For example, a chassis can contain drives and planar boards, a bus can contain cards, and a
cabinet can contain chassis, buses, and so forth. Such structures can be modeled naturally with the

Equi pnent class defines an interface for all equipment in the part-whole hierarchy.

cl ass Equi prent {

~Equi prent () ;

const char* Nane() { return _nane; }

Watt Power () ;
Currency NetPrice();
Currency Di scountPrice();

voi d Add(Equi pnent *) ;
voi d Renove(Equi pnent *) ;
Iterator* Createlterator();

Equi pnent (const char*);
const char* _nane;
Equi prrent declares operations that return the attributes of a piece of equipment, like its power

consumption and cost. Subclasses implement these operations for specific kinds of egquipment.
Equi pnent asodeclaresaCr eat el t er at or operation that returnsan | t er at or (see Appendix C)

for accessing its parts. The default implementation for this operation returns a Nulllterator, which iterates

Subclasses of Equi prrent might include Leaf classes that represent disk drives, integrated circuits, and

cl ass Fl oppyDi sk : public Equiprment {

Fl oppyDi sk(const char*);

~Fl oppyDi sk();

Watt Power () ;
Currency NetPrice();
Currency DiscountPrice();

Conposi t eEqui prrent isthe base class for equipment that contains other equipment. It's also a subclass

cl ass ConpositeEqui pnent : public Equi pnent {

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4cfs.htm (7 of 10) [21/08/2002 19:12:56]

Composite

virtual ~ConpositeEqui pnment();

virtual watt Power();
virtual Currency NetPrice();
virtual Currency DiscountPrice();

virtual void Add(Equi prment*);
virtual void Renove(Equi pnent*);
virtual Iterator* Createlterator();

prot ect ed:

Conposi t eEqui pnent (const char*);
private:

Li st _equi prent;

}s

Conposi t eEqui prent defines the operations for accessing and managing subequipment. The
operations Add and Renov e insert and del ete equipment from the list of equipment stored in the

_equi prrent member. The operation Cr eat el t er at or returns an iterator (specificaly, an instance of
Li st terat or) that will traversethislist.

A default implementation of Net Pri ce might use Cr eat el t er at or to sum the net prices of the
subequi pment?:;

Currency ConpositeEqui pment:: NetPrice () {
Iterator* i = Createlterator();
Currency total = O;

for (i->First(); 'i->IsDone(); i->Next()) {
total += i->Currentltem()->NetPrice();

}

delete i;

return total;

}

Now we can represent a computer chassis as a subclass of Conposi t eEqui pnent called Chassi s.
Chassi s inherits the child-related operations from Conposi t eEqui prent .

class Chassis : public ConpositeEqui pnment {
publi c:

Chassi s(const char*);

virtual ~Chassis();

virtual Watt Power();
virtual Currency NetPrice();
virtual Currency DiscountPrice();

b

We can define other equipment containers such as Cabi net and Bus inasimilar way. That gives us
everything we need to assemble equipment into a (pretty simple) personal computer:

Cabi net* cabi net = new Cabi net ("PC Cabi net");
Chassi s* chassis = new Chassi s("PC Chassis");

cabi net - >Add(chassi s) ;

Bus* bus = new Bus("MCA Bus");
bus- >Add(new Card("16Mds Token Ring"));

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4cfs.htm (8 of 10) [21/08/2002 19:12:56]

Composite

chassi s- >Add(bus) ;
chassi s- >Add(new Fl oppyDi sk("3.5in Fl oppy"));

cout << "The net price is " << chassis->NetPrice() << endl;

* Known Uses

Examples of the Composite pattern can be found in aimost all object-oriented systems. The original View
class of Smalltalk Model/View/Controller [KP88] was a Composite, and nearly every user interface toolkit
or framework has followed in its steps, including ET++ (with its VObjects [WGM88]) and InterViews
(Styles [LCI+92], Graphics[VL88], and Glyphs [CL9Q]). It's interesting to note that the original View of
Model/View/Controller had a set of subviews; in other words, View was both the Component class and the

Composite class. Release 4.0 of Smalltalk-80 revised Model/View/Controller with a Visual Component class
that has subclasses View and CompositeView.

The RTL Smalltalk compiler framework [JIML92] uses the Composite pattern extensively. RTLEXxpression

isa Component class for parse trees. It has subclasses, such as BinaryExpression, that contain child
RTLExpression objects. These classes define a composite structure for parse trees. RegisterTransfer isthe
Component class for a program's intermediate Single Static Assignment (SSA) form. Leaf subclasses of
RegisterTransfer define different static assignments such as

. primitive assignments that perform an operation on two registers and assign the result to a third;

. an assignment with a source register but no destination register, which indicates that the register is
used after aroutine returns; and

. an assignment with a destination register but no source, which indicates that the register is assigned
before the routine starts.

Another subclass, RegisterTransferSet, is a Composite class for representing assignments that change
several registers at once.

Another example of this pattern occurs in the financial domain, where a portfolio aggregates individual
assets. Y ou can support complex aggregations of assets by implementing a portfolio as a Composite that
conforms to the interface of an individual asset [BE93].

The Command (233) pattern describes how Command objects can be composed and sequenced with a
MacroCommand Composite class.

v Related Patterns

Often the component-parent link is used for a Chain of Responsibility (223).

Decorator (175) is often used with Composite. When decorators and composites are used together, they will

usually have a common parent class. So decorators will have to support the Component interface with
operations like Add, Remove, and GetChild.

Flyweight (195) lets you share components, but they can no longer refer to their parents.

Iterator (257) can be used to traverse composites.

Visitor (331) localizes operations and behavior that would otherwise be distributed across Composite and
Leaf classes.

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4cfs.htm (9 of 10) [21/08/2002 19:12:56]

Composite

Y
p Decorator

4 Bridge

2t's easy to forget to delete the iterator once you're done with it. The Iterator pattern shows how to guard
against such bugs on page 266.

Abstract Factory « Adapter « Bridge « Builder + Chain of Responsibility « Command » Composite
D ator » Facade + Factory Method + Flyweight + Interpreter + Iterator + Mediator + Memento *
Observer * Prototype = Proxy * Singleton = State « Strategy * Template Method « Visitor

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4cfs.htm (10 of 10) [21/08/2002 19:12:56]

Decorator

©

SEARCH

Intent

Alsa Known As
Motivation
Applicability
Structure
Participants
Collaborations
Consequences
Implementation
Sample Code
Known Uses
Related Patterns

Case Study | Pattern Catalog | Contlusion
Decorator Object Structural

| Contents |Guide to Readers | Glossary | Notation | Foundation | Bibliography | Index | Pattern Map |

¥ Intent

Attach additional responsibilities to an object dynamically. Decorators provide a flexible aternative to subclassing
for extending functionality.

* Also Known As

Wrapper

* Motivation

Sometimes we want to add responsibilities to individual objects, not to an entire class. A graphical user interface
toolkit, for example, should let you add properties like borders or behaviors like scrolling to any user interface
component.

One way to add responsihilitiesis with inheritance. Inheriting a border from another class puts a border around
every subclass instance. Thisisinflexible, however, because the choice of border is made statically. A client can't
control how and when to decorate the component with a border.

A more flexible approach is to enclose the component in another object that adds the border. The enclosing object
iscalled adecorator. The decorator conforms to the interface of the component it decorates so that its presenceis
transparent to the component's clients. The decorator forwards requests to the component and may perform
additional actions (such as drawing a border) before or after forwarding. Transparency lets you nest decorators
recursively, thereby allowing an unlimited number of added responsibilities.

-
Some applcalors woikd bersd) —1
Ty pging abpcls w medel sy
aepac] ol thar funshans il Bl
B nares dessgn snpeiEch would be
prizhitviien b aapansye

aBorderDecorator

Far sgargls, moal dosrmant ai—
mers madubares T el kol
g arwd sch g fSclbss G soms
anlanl, Howsess, ey Fvarpbly
Ep ahan of uarg chjesta 1
rapresan| apch chamcks: and

aScrollDecoralor -

graphical suman) n e documsn
Doirg 39 would prosess Sty
al lha lreal kvl i he
apphsanan, Teel and graphcs
arild b Insabad unilor miy with

al | | |¢

aTextView -

For example, suppose we have a TextView object that displays text in awindow. TextView has no scroll bars by
default, because we might not always need them. When we do, we can use a Scroll Decorator to add them. Suppose
we also want to add athick black border around the TextView. We can use a BorderDecorator to add this as well.
We simply compose the decorators with the TextView to produce the desired result.

The following object diagram shows how to compose a TextView object with BorderDecorator and
ScrollDecorator objects to produce a bordered, scrollable text view:

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4dfs.htm (1 of 8) [21/08/2002 19:13:44]

javascript:loadApplet()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4d.htm#relatedpatterns
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4d.htm#knownuses
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4d.htm#samplecode
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4d.htm#implementation
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4d.htm#consequences
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4d.htm#collaborations
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4d.htm#participants
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4d.htm#structure
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4d.htm#applicability
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4d.htm#motivation
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4d.htm#alsoknownas
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4d.htm#intent
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/helpfs.htm
javascript:build()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/patcafs.htm

Decorator

(_ aBorderDecorator | — .,
aScroliDecorator
L_cu-mpunent »> {a’faxwinw -j

componant i _/J

The ScrollDecorator and BorderDecorator classes are subclasses of Decorator, an abstract class for visua
components that decorate other visual components.

VisvalComponent

Drawy)
| | component
TextView Degcorator
Drraw() Draw(} ©——q-—"7-"-"-"—"—"--"~"=-~"77 component->Draw()
| |
ScroliDecorator BorderDecorator
. N
Decorator:Dr ;

Draw() Draw() O-===-==sfe-mmooes il
ScroliTal) DrawBordar()
seroliPosition borderWidth

VisualComponent is the abstract class for visua objects. It defines their drawing and event handling interface.
Note how the Decorator class simply forwards draw reguests to its component, and how Decorator subclasses can
extend this operation.

Decorator subclasses are free to add operations for specific functionality. For example, Scroll Decorator's Scroll To
operation lets ather objects scroll the interface if they know there happens to be a ScrollDecorator object in the
interface. The important aspect of this pattern isthat it lets decorators appear anywhere a Visual Component can.
That way clients generally can't tell the difference between a decorated component and an undecorated one, and so
they don't depend at al on the decoration.

v Applicability
Use Decorator

. to add responsibilities to individual objects dynamically and transparently, that is, without affecting other
objects.

. for responsibilities that can be withdrawn.

. when extension by subclassing isimpractical. Sometimes alarge number of independent extensions are
possible and would produce an explosion of subclasses to support every combination. Or a class definition
may be hidden or otherwise unavailable for subclassing.

* Structure

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4dfs.htm (2 of 8) [21/08/2002 19:13:44]

Decorator

Component -
Operationy)
| | COHTE t
ponen
ConcreteComponent Dacorator
Crperation() O e compenent-=Operationt)
| |
ConcreteDecoratorA ConcreteDecoratorB
)] Dacorator: Oparationd); B
Operation() Operation} ©------7------1 AddedBehawEnr{}: 0
AddedBehavior()
addedState

¥ Participants

. Component (Visua Component)

o defines the interface for objects that can have responsibilities added to them dynamically.
. ConcreteComponent (TextView)

o defines an object to which additional responsibilities can be attached.
. Decorator

o maintains areference to a Component object and defines an interface that conforms to Component's
interface.

. ConcreteDecorator (BorderDecorator, Scroll Decorator)

o adds responsibilities to the component.

* Collaborations

. Decorator forwards requests to its Component object. It may optionally perform additional operations
before and after forwarding the request.

v Consequences

The Decorator pattern has at least two key benefits and two liabilities:

1. Moreflexibility than static inheritance. The Decorator pattern provides a more flexible way to add
responsibilities to objects than can be had with static (multiple) inheritance. With decorators,
responsibilities can be added and removed at run-time simply by attaching and detaching them. In contrast,
inheritance requires creating a new class for each additiona responsibility (e.g.,
BorderedScrollableTextView, BorderedTextView). This givesrise to many classes and increases the
complexity of asystem. Furthermore, providing different Decorator classes for a specific Component class
lets you mix and match responsibilities.

Decorators also make it easy to add a property twice. For example, to give a TextView adouble border,
simply attach two BorderDecorators. Inheriting from a Border class twice is error-prone at best.

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4dfs.htm (3 of 8) [21/08/2002 19:13:44]

Decorator

2. Avoids feature-laden classes high up in the hierarchy. Decorator offers a pay-as-you-go approach to adding
responsibilities. Instead of trying to support al foreseeable features in a complex, customizable class, you
can define asimple class and add functionality incrementally with Decorator objects. Functionality can be
composed from simple pieces. As aresult, an application needn't pay for features it doesn't use. It's also
easy to define new kinds of Decorators independently from the classes of objects they extend, even for
unforeseen extensions. Extending a complex class tends to expose details unrelated to the responsibilities
you're adding.

3. Adecorator and its component aren't identical. A decorator acts as a transparent enclosure. But from an
object identity point of view, adecorated component is not identical to the component itself. Hence you
shouldn't rely on object identity when you use decorators.

4. Lotsof little objects. A design that uses Decorator often results in systems composed of lots of little objects
that al look alike. The objects differ only in the way they are interconnected, not in their class or in the
value of their variables. Although these systems are easy to customize by those who understand them, they
can be hard to learn and debug.

¥ Implementation

Several issues should be considered when applying the Decorator pattern:

1. Interface conformance. A decorator object’s interface must conform to the interface of the component it
decorates. ConcreteDecorator classes must therefore inherit from a common class (at least in C++).

2. Omitting the abstract Decorator class. There's no need to define an abstract Decorator class when you only
need to add one responsibility. That's often the case when you're dealing with an existing class hierarchy
rather than designing anew one. In that case, you can merge Decorator's responsibility for forwarding
reguests to the component into the ConcreteDecorator.

3. Keeping Component classes lightweight. To ensure a conforming interface, components and decorators
must descend from a common Component class. It's important to keep this common class lightweight; that
is, it should focus on defining an interface, not on storing data. The definition of the data representation
should be deferred to subclasses, otherwise the complexity of the Component class might make the
decorators too heavyweight to use in quantity. Putting alot of functionality into Component also increases
the probability that concrete subclasses will pay for features they don't need.

4. Changing the skin of an object versus changing its guts. We can think of a decorator as a skin over an
object that changes its behavior. An alternative is to change the object's guts. The Strategy (315) patternisa
good example of a pattern for changing the guts.

Strategies are a better choice in situations where the Component classisintrinsically heavyweight, thereby
making the Decorator pattern too costly to apply. In the Strategy pattern, the component forwards some of
its behavior to a separate strategy object. The Strategy pattern lets us alter or extend the component's
functionality by replacing the strategy object.

For example, we can support different border styles by having the component defer border-drawing to a
separate Border object. The Border object is a Strategy object that encapsulates a border-drawing strategy.
By extending the number of strategies from just one to an open-ended list, we achieve the same effect as
nesting decorators recursively.

In MacApp 3.0 [App89] and Bedrock [Sym93a], for example, graphical components (called "views")
maintain alist of "adorner" objects that can attach additional adornments like borders to a view component.
If aview has any adorners attached, then it gives them a chance to draw additional embellishments.
MacApp and Bedrock must use this approach because the View classis heavyweight. It would be too
expensive to use afull-fledged View just to add a border.

Since the Decorator pattern only changes a component from the outside, the component doesn't have to
know anything about its decorators; that is, the decorators are transparent to the component:

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4dfs.htm (4 of 8) [21/08/2002 19:13:44]

Decorator

|/_ aDecorator N

Ikcmﬂponent .

aDecorator

ral:nmpnnent ‘1
7 C J
I— decorator-extended funclionality Q

component =

With strategies, the component itself knows about possible extensions. So it has to reference and maintain
the corresponding strategies:

r aComponent A s——h\‘
Lsuategies . {:> trategy {aﬁtmwgy \I
next
4 next _’J
I— sirategy—-extended functionalify Q

The Strategy-based approach might require modifying the component to accommodate new extensions. On
the other hand, a strategy can have its own specialized interface, whereas a decorator's interface must
conform to the component's. A strategy for rendering a border, for example, need only define the interface
for rendering a border (DrawBorder, GetWidth, etc.), which means that the strategy can be lightweight
even if the Component classis heavyweight.

MacApp and Bedrock use this approach for more than just adorning views. They also use it to augment the
event-handling behavior of objects. In both systems, aview maintains alist of "behavior" objects that can
modify and intercept events. The view gives each of the registered behavior objects a chance to handle the
event before nonregistered behaviors, effectively overriding them. Y ou can decorate a view with special
keyboard-handling support, for example, by registering a behavior object that intercepts and handles key
events.

v Sample Code

The following code shows how to implement user interface decoratorsin C++. We'll assume there's a Component
classcalled Vi sual Conponent .

cl ass Vi sual Conponent {
public:
Vi sual Conponent () ;

virtual void Draw();
virtual void Resize();
/1

b

We define asubclass of Vi sual Conmponent caled Decor at or , which we'll subclass to obtain different
decorations.

cl ass Decorator : public Visual Conponent {
public:
Decor at or (Vi sual Conponent *) ;

virtual void Draw();
virtual void Resize();
I
private:
Vi sual Conmponent * _conponent;

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4dfs.htm (5 of 8) [21/08/2002 19:13:44]

Decorator

b

Decor at or decoratesthe Vi sual Conponent referenced by the _conponent instance variable, whichis
initialized in the constructor. For each operationin Vi sual Conponent 'sinterface, Decor at or definesa
default implementation that passes the request onto _conponent :

voi d Decorator::Draw () {
_conponent - >Draw() ;
}

voi d Decorator::Resize () {
_component - >Resi ze();

}

Subclasses of Decor at or define specific decorations. For example, the class Bor der Decor at or addsa
border to its enclosing component. Bor der Decor at or isasubclass of Decor at or that overridesthe Dr aw
operation to draw the border. Bor der Decor at or also defines a private Dr awBor der helper operation that
does the drawing. The subclassinherits all other operation implementations from Decor at or .

cl ass BorderDecorator : public Decorator {
public:
Bor der Decor at or (Vi sual Conponent*, int borderWdth);

virtual void Draw();

private:

voi d DrawBorder(int);
private:

int _wdth;
|

voi d BorderDecorator::Draw () {
Decorator::Draw);
Dr awBor der (_wi dt h) ;

}

A similar implementation would follow for Scr ol | Decor at or and Dr opShadowDecor at or , which would
add scrolling and drop shadow capabilities to avisual component.

Now we can compose instances of these classes to provide different decorations. The following codeillustrates
how we can use decorators to create a bordered scrollable Text Vi ew.

First, we need away to put avisual component into a window object. We'll assume our W ndow class provides a
Set Cont ent s operation for this purpose:

voi d W ndow. : Set Contents (Vi sual Conponent* contents) {
I
}
Now we can create the text view and awindow to put it in:

W ndow* wi ndow = new W ndow;
Text Vi ew* textView = new Text Vi ew,

Text Vi ewisaVi sual Conponent , which letsus put it into the window:
wi ndow >Set Cont ent s(t ext Vi ew) ;
But we want a bordered and scrollable Text Vi ew. So we decorate it accordingly before putting it in the window.

wi ndow >Set Cont ent s(

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4dfs.htm (6 of 8) [21/08/2002 19:13:44]

Decorator

new Bor der Decor at or (
new Scrol | Decorator(textView), 1

)
E

Because W ndow accesses its contents through the Vi sual Conponent interface, it's unaware of the decorator's
presence. Y ou, asthe client, can still keep track of the text view if you have to interact with it directly, for
example, when you need to invoke operations that aren't part of the Vi sual Conponent interface. Clients that
rely on the component's identity should refer to it directly as well.

* Known Uses

Many object-oriented user interface toolkits use decorators to add graphical embellishments to widgets. Examples
include InterViews [LVC98, LCI+92], ET++ [WGM88], and the ObjectWorks\Smalltalk class library [Par9Q].
More exatic applications of Decorator are the DebuggingGlyph from InterViews and the PassivityWrapper from
ParcPlace Smalltalk. A DebuggingGlyph prints out debugging information before and after it forwards a layout
request to its component. This trace information can be used to analyze and debug the layout behavior of objectsin
acomplex composition. The PassivityWrapper can enable or disable user interactions with the component.

But the Decorator pattern is by no means limited to graphical user interfaces, as the following example (based on
the ET++ streaming classes [WGM88)) illustrates.

Streams are afundamental abstraction in most 1/0 facilities. A stream can provide an interface for converting
objectsinto a sequence of bytes or characters. That lets us transcribe an object to afile or to a string in memory for
retrieval later. A straightforward way to do thisisto define an abstract Stream class with subclasses
MemoryStream and FileStream. But suppose we also want to be able to do the following:

. Compress the stream data using different compression agorithms (run-length encoding, Lempel-Ziv, etc.).
. Reduce the stream data to 7-bit ASCII characters so that it can be transmitted over an ASCII
communication channel.

The Decorator pattern gives us an elegant way to add these responsibilities to streams. The diagram below shows
one solution to the problem:

Stream
Futlnd)
Putstnings)
HanalaBufferrull)
| | | component
MemoryStream FileStream StreamDecorator
HandleBufferFull{} HandleBufferFull{} HandleBufferFull{} +-F---------—----- ‘I mrrq:unnem—:-Han-:leEiuHeerliH
ASCITStream CompressingStream
comprass data in buffier
HandleBufferfFull) HandleBufferFull) 0--F---- StreamDecorator.: HandleBuffarFull)

The Stream abstract class maintains an internal buffer and provides operations for storing data onto the stream
(PutInt, PutString). Whenever the buffer isfull, Stream calls the abstract operation HandleBufferFull, which does
the actual datatransfer. The FileStream version of this operation overrides this operation to transfer the buffer to a
file.

The key class here is StreamDecorator, which maintains a reference to a component stream and forwards requests
to it. StreamDecorator subclasses override HandleBufferFull and perform additional actions before calling
StreamDecorator's HandleBufferFull operation.

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4dfs.htm (7 of 8) [21/08/2002 19:13:44]

Decorator

For example, the CompressingStream subclass compresses the data, and the ASCII 7Stream converts the datainto
7-bit ASCII. Now, to create a FileStream that compresses its data and converts the compressed binary datato 7-bit
ASCII, we decorate a FileStream with a CompressingStream and an ASCI | 7Stream:

Streant aStream = new Conpressi ngSt rean(
new ASCl | 7St r ean
new Fil eStrean("aFi | eNarme")

)
)
aStream >Put I nt (12);
aStream >Put String("aString");

v Related Patterns

Adapter (139): A decorator is different from an adapter in that a decorator only changes an object's
responsibilities, not itsinterface; an adapter will give an object a completely new interface.

Composite (163): A decorator can be viewed as a degenerate composite with only one component. However, a
decorator adds additional responsibilities—it isn't intended for object aggregation.

Strategy (315): A decorator lets you change the skin of an object; a strategy lets you change the guts. These are
two alternative ways of changing an object.

a
p Facade

4 Composite

A t Factory » Adapter = Bridge » Builder = Chain of Responsibility * Command « Composite «
rator = Facade = Factory Method = Flyweight » Imterpreter = lterator = Mediator = Mememnto »
rver * Prototype * Proxy + Singleton » State + Strategy + Template Method « Visitor

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4dfs.htm (8 of 8) [21/08/2002 19:13:44]

Facade

©

SEARCH

Intent
Motivation
Applicability
Structure
Participants
Collaborations
Consequences
Implementation
Sample Code
Known Uses
Related Patterns

Casge Study

Fatiern Catalog | Conclusion

Faﬁade Object Structural

| Contents |Guide to Readers | Glossary | Notation | Foundation | Bibliography | Index | Pattern Map |

¥ Intent

Provide a unified interface to a set of interfacesin a subsystem. Facade defines a higher-level interface that makes the
subsystem easier to use.

* Motivation

Structuring a system into subsystems helps reduce complexity. A common design goal isto minimize the
communication and dependencies between subsystems. One way to achieve this goa is to introduce afacade object
that provides asingle, smplified interface to the more general facilities of a subsystem.

client classes

/ / * Facade
Consider for example a programming environment that gives applications access to its compiler subsystem. This

subsystem contains classes such as Scanner, Parser, ProgramNode, BytecodeStream, and ProgramNodeBuilder that
implement the compiler. Some specialized applications might need to access these classes directly. But most clients

of acompiler generally don't care about details like parsing and code generation; they merely want to compile some
code. For them, the powerful but low-level interfaces in the compiler subsystem only complicate their task.

subsystem classes

To provide a higher-level interface that can shield clients from these classes, the compiler subsystem also includes a
Compiler class. This class defines a unified interface to the compiler's functionality. The Compiler class actsas a
facade: It offers clients asingle, smple interface to the compiler subsystem. It glues together the classes that
implement compiler functionality without hiding them completely. The compiler facade makes life easier for most
programmers without hiding the lower-level functionality from the few that need it.

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/patdefs.htm (1 of 8) [21/08/2002 19:14:03]

javascript:loadApplet()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4e.htm#relatedpatterns
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4e.htm#knownuses
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4e.htm#samplecode
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4e.htm#implementation
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4e.htm#consequences
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4e.htm#collaborations
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4e.htm#participants
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4e.htm#structure
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4e.htm#applicability
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4e.htm#motivation
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4e.htm#intent
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/helpfs.htm
javascript:build()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/patcafs.htm

Facade

Compiler

Compile()

:—-| Scanner |~——P| Token |-1—

e Parser Symbol |a—

— BytecodeStraam

- ProgramNodeBuilder - - FProgramNode ——

A

o1 L
CodeGenerator (& - - - |5tatemenmode |
______)\ | ExpressionNode |
| StackiMachineCodeGenerator | | RISCCodeGenerator | | VariableNode |

v Applicability
Use the Facade pattern when

. you want to provide a simple interface to a complex subsystem. Subsystems often get more complex as they
evolve. Most patterns, when applied, result in more and smaller classes. This makes the subsystem more
reusable and easier to customize, but it also becomes harder to use for clients that don't need to customizeit. A
facade can provide a simple default view of the subsystem that is good enough for most clients. Only clients
needing more customizability will need to look beyond the facade.

. there are many dependencies between clients and the implementation classes of an abstraction. Introduce a
facade to decoupl e the subsystem from clients and other subsystems, thereby promoting subsystem
independence and portability.

. you want to layer your subsystems. Use a facade to define an entry point to each subsystem level. If
subsystems are dependent, then you can simplify the dependencies between them by making them
communicate with each other solely through their facades.

v Structure

[foee |
Facade

Suksysiam clrsses

v Participants

. Facade (Compiler)

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/patdefs.htm (2 of 8) [21/08/2002 19:14:03]

Facade

o knows which subsystem classes are responsible for arequest.
o delegates client requests to appropriate subsystem objects.
. Subsystem classes (Scanner, Parser, ProgramNode, etc.)
o implement subsystem functionality.
o handle work assigned by the Facade object.

o have no knowledge of the facade; that is, they keep no referencestoit.

* Collaborations

. Clients communicate with the subsystem by sending requests to Facade, which forwards them to the
appropriate subsystem object(s). Although the subsystem objects perform the actual work, the facade may
have to do work of its own to trandate its interface to subsystem interfaces.

. Clientsthat use the facade don't have to access its subsystem objects directly.

v Consequences

The Facade pattern offers the following benefits:

1. It shields clients from subsystem components, thereby reducing the number of objects that clients deal with
and making the subsystem easier to use.

2. It promotes weak coupling between the subsystem and its clients. Often the components in a subsystem are
strongly coupled. Weak coupling lets you vary the components of the subsystem without affecting its clients.
Facades help layer a system and the dependencies between objects. They can eliminate complex or circular
dependencies. This can be an important consequence when the client and the subsystem are implemented
independently.

Reducing compilation dependenciesis vital in large software systems. Y ou want to save time by minimizing
recompilation when subsystem classes change. Reducing compilation dependencies with facades can limit the
recompilation needed for asmall change in an important subsystem. A facade can also simplify porting
systems to other platforms, because it's less likely that building one subsystem requires building all others.

3. It doesn't prevent applications from using subsystem classes if they need to. Thus you can choose between
ease of use and generality.

v Implementation

Consider the following issues when implementing a facade:

1. Reducing client-subsystem coupling. The coupling between clients and the subsystem can be reduced even
further by making Facade an abstract class with concrete subclasses for different implementations of a
subsystem. Then clients can communicate with the subsystem through the interface of the abstract Facade
class. This abstract coupling keeps clients from knowing which implementation of a subsystem is used.

An alternative to subclassing is to configure a Facade object with different subsystem objects. To customize
the facade, smply replace one or more of its subsystem objects.

2. Public versus private subsystem classes. A subsystem is analogous to a classin that both have interfaces, and
both encapsul ate something—a class encapsul ates state and operations, while a subsystem encapsul ates
classes. And just asit's useful to think of the public and private interface of aclass, we can think of the public
and private interface of a subsystem.

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/patdefs.htm (3 of 8) [21/08/2002 19:14:03]

Facade

The public interface to a subsystem consists of classesthat al clients can access; the private interface is just
for subsystem extenders. The Facade classis part of the public interface, of course, but it's not the only part.
Other subsystem classes are usually public as well. For example, the classes Parser and Scanner in the
compiler subsystem are part of the public interface.

Making subsystem classes private would be useful, but few object-oriented languages support it. Both C++
and Smalltalk traditionally have had a global name space for classes. Recently, however, the C++
standardization committee added name spaces to the language [Str94], which will let you expose just the

public subsystem classes.

v Sample Code

Let'stake acloser look at how to put afacade on a compiler subsystem.

The compiler subsystem defines a{ BytecodeStream} class that implements a stream of Byt ecode objects. A
Byt ecode object encapsulates a bytecode, which can specify machine instructions. The subsystem also defines a
Token class for objects that encapsulate tokens in the programming language.

The Scanner classtakes astream of characters and produces a stream of tokens, one token at atime.

cl ass Scanner {

public:
Scanner (i st rean®) ;
virtual ~Scanner();

virtual Token& Scan();
private:
i stream& _i nput Stream

|
The class Par ser usesaPr ogr amNodeBui | der to construct a parse tree from a Scanner 'stokens.

class Parser {
public:
Parser();
virtual ~Parser();

virtual void Parse(Scanner&, ProgranNodeBuil der&);

H

Par ser callsback on Pr ogr anNodeBui | der to build the parse tree incrementally. These classes interact
according to the Builder (97) pattern.

cl ass ProgramNodeBui | der {
publi c:
Pr ogr amNodeBui | der () ;

virtual ProgranmNode* Newvari abl e(
const char* vari abl eNane
) const;

virtual ProgramNode* NewAssi gnnent (
Progr anNode* vari abl e, ProgranmNode* expression
) const;

virtual Programode* NewRet urnSt at enent (
Pr ogr anNode* val ue
) const;

virtual ProgramNode* NewConditi on(

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/patdefs.htm (4 of 8) [21/08/2002 19:14:03]

Facade

Pr ogr anNode* conditi on,

ProgramNode* truePart, ProgranNode* fal sePart
) const;
/11

Pr ogr anNode* Get Root Node();
private:
Pr ogr anNode* _node;

b

The parse tree is made up of instances of Pr ogr amNode subclasses such as St at enent Node,
Expr essi onNode, and so forth. The Pr ogr aniNode hierarchy is an example of the Composite (163) pattern.

Pr ogr anNode defines an interface for manipulating the program node and its children, if any.

cl ass ProgranmNode {

public:
/1l program node mani pul ation
virtual void GetSourcePosition(int& line, inté& index);
/1

/1 child manipul ation
virtual void Add(ProgramNode*);
virtual void Renove(ProgranNode*);

I

virtual void Traverse(CodeCenerator&);
pr ot ect ed:

Pr ogr amNode() ;
i

The Tr aver se operation takes a CodeGener at or object. Pr ogr anmNode subclasses use this object to generate
machine code in the form of Byt ecode objectson aByt ecodeSt r eam The class CodeGener at or isavisitor

(see Visitor (331)).

cl ass CodeCenerator {

publi c:
virtual void Visit(Statenment Node*);
virtual void Visit(Expressi onNode*);
1

prot ect ed:
CodeGener at or (Byt ecodeSt rean®) ;

prot ect ed:
Byt ecodeStream& _out put;

b

CodeGener at or has subclasses, for example, St ackMachi neCodeGener at or and Rl SCCodeGener at or,
that generate machine code for different hardware architectures.

Each subclass of Pr ogr amNode implements Tr aver se to call Tr aver se onitschild Pr ogr aniNode objects.
In turn, each child does the same for its children, and so on recursively. For example, Expr essi onNode defines
Traver se asfollows:

voi d Expressi onNode: : Traverse (CodeGeneratoré& cg) {
cg.Visit(this);

Listlterator i(_children);

for (i.First(); !'i.lsDone(); i.Next()) {
i.Currentltem)->Traverse(cg);
}

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/patdefs.htm (5 of 8) [21/08/2002 19:14:03]

Facade

The classes we've discussed so far make up the compiler subsystem. Now we'll introduce a Conpi | er class, a
facade that puts all these piecestogether. Conpi | er provides asimpleinterface for compiling source and
generating code for a particular machine.

class Compiler {
publi c:
Compi ler();

virtual void Conpile(istream’ BytecodeStrean®);
1

voi d Conpiler:: Conpile (

i strean& i nput, BytecodeStream& out put
) A

Scanner scanner (i nput);

Pr ogr anNodeBui | der bui | der;

Par ser parser;

par ser. Parse(scanner, builder);

Rl SCCodeCener at or gener at or (out put);
ProgranNode* parseTree = buil der. Get Root Node();
par seTr ee- >Tr aver se(gener ator);

}

This implementation hard-codes the type of code generator to use so that programmers aren't required to specify the
target architecture. That might be reasonable if there's only ever one target architecture. If that's not the case, then we
might want to change the Conpi | er constructor to takeaCodeGener at or parameter. Then programmers can
specify the generator to use when they instantiate Conrpi | er . The compiler facade can parameterize other
participants such as Scanner and Pr ogr amNodeBui | der aswell, which adds flexibility, but it also detracts
from the Facade pattern's mission, which isto simplify the interface for the common case.

* Khown Uses

The compiler example in the Sample Code section was inspired by the ObjectWorks\Smalltalk compiler system
[Par9Q].

In the ET++ application framework [WGM88], an application can have built-in browsing tools for inspecting its
objects at run-time. These browsing tools are implemented in a separate subsystem that includes a Facade class called
"ProgrammingEnvironment.” This facade defines operations such as InspectObject and I nspectClass for accessing
the browsers.

An ET++ application can also forgo built-in browsing support. In that case, ProgrammingEnvironment implements
these requests as null operations; that is, they do nothing. Only the ETProgrammingEnvironment subclass
implements these requests with operations that display the corresponding browsers. The application has no
knowledge of whether a browsing environment is available or not; there's abstract coupling between the application
and the browsing subsystem.

The Choices operating system [CIRM 93] uses facades to compose many frameworks into one. The key abstractions
in Choices are processes, storage, and address spaces. For each of these abstractions there is a corresponding
subsystem, implemented as a framework, that supports porting Choices to avariety of different hardware platforms.
Two of these subsystems have a "representative” (i.e., facade). These representatives are FileSystemlnterface
(storage) and Domain (address spaces).

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/patdefs.htm (6 of 8) [21/08/2002 19:14:03]

Facade

Process ™ Domain

Add{Memory, Addrass)

—A Remove(Mamaory)
Protect(Memory, Protection)
RepairFauit()
AddressTranslation . MemoryObject
FindMemony(Address) BulkdCachea() . MemoryObjectCache
TwolevelPageTable ParsistentStore PagadMemaoryObjectCache
File Disk

For example, the virtual memory framework has Domain asits facade. A Domain represents an address space. It
provides a mapping between virtual addresses and offsets into memory objects, files, or backing store. The main
operations on Domain support adding a memory object at a particular address, removing a memory object, and
handling a page fault.

As the preceding diagram shows, the virtual memory subsystem uses the following components internally:
. MemoryObject represents a data store.

. MemoryObjectCache caches the data of MemoryObjects in physical memory. MemoryObjectCache is
actually a Strategy (315) that localizes the caching policy.

. AddressTranslation encapsulates the address translation hardware.

The RepairFault operation is called whenever a page fault interrupt occurs. The Domain finds the memory object at
the address causing the fault and delegates the RepairFault operation to the cache associated with that memory
object. Domains can be customized by changing their components.

v Related Patterns

Abstract Factory (87) can be used with Facade to provide an interface for creating subsystem objects in a subsystem-
independent way. Abstract Factory can also be used as an alternative to Facade to hide platform-specific classes.

Mediator (273) issimilar to Facade in that it abstracts functionality of existing classes. However, Mediator's purpose
isto abstract arbitrary communication between colleague objects, often centralizing functionality that doesn't belong
in any one of them. A mediator's colleagues are aware of and communicate with the mediator instead of
communicating with each other directly. In contrast, afacade merely abstracts the interface to subsystem objects to
make them easier to use; it doesn't define new functionality, and subsystem classes don't know about it.

Usually only one Facade object is required. Thus Facade objects are often Singletons (127).

&

» Flyweight
4 Decorator

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/patdefs.htm (7 of 8) [21/08/2002 19:14:03]

Facade

ct Factory = Adapter = Bridge * Builder = Chain of Responsibility = Command « Composite =
tor *+ Facads + Factory Method + Flyweight + Interpreter « lterator + Mediator « Memento *
rver = Prototype + Proxy + Singleton « State + Strategy « Template Method = Visitor

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/patdefs.htm (8 of 8) [21/08/2002 19:14:03]

Flyweight

©

SEARCH

Intent
Motivation
Applicability
Structure
Participants
Collaborations
Consequences
Implementation
Sample Code
Known Uses
Related Patterns

Pattern Catalog | Conclusion

Flyweight Object Structural

| Contents |'I3uidc to Hnﬂdu5| Glossary | Notation | Foundation | Bibliography | Index | Pattern Map |

Case Study

¥ Intent

Use sharing to support large numbers of fine-grained objects efficiently.

* Motivation

Some applications could benefit from using objects throughout their design, but a naive implementation would
be prohibitively expensive.

For example, most document editor implementations have text formatting and editing facilities that are
modul arized to some extent. Object-oriented document editors typically use objects to represent embedded
elements like tables and figures. However, they usually stop short of using an object for each character in the
document, even though doing so would promote flexibility at the finest levelsin the application. Characters and
embedded elements could then be treated uniformly with respect to how they are drawn and formatted. The
application could be extended to support new character sets without disturbing other functionality. The
application's object structure could mimic the document's physical structure. The following diagram shows how
a document editor can use objects to represent characters.

E——;__j‘b“;— =1
V0 [T~
1 T
T e
'\ L\“x - == character
1\"-5 A = ~ objects
fﬂ'ﬁ
\ e
v || =l a]r fefnfy==- objects
b,
\ "
L |
‘k N -

The drawback of such adesignisits cost. Even moderate-sized documents may require hundreds of thousands
of character objects, which will consume lots of memory and may incur unacceptable run-time overhead. The
Flyweight pattern describes how to share objects to allow their use at fine granularities without prohibitive cost.

A flyweight is a shared object that can be used in multiple contexts simultaneously. The flyweight acts as an
independent object in each context—it's indistinguishable from an instance of the object that's not shared.
Flyweights cannot make assumptions about the context in which they operate. The key concept hereisthe
distinction between intrinsic and extrinsic state. Intrinsic state is stored in the flyweight; it consists of
information that's independent of the flyweight's context, thereby making it sharable. Extrinsic state depends on
and varies with the flyweight's context and therefore can't be shared. Client objects are responsible for passing
extrinsic state to the flyweight when it needsiit.

Flyweights model concepts or entities that are normally too plentiful to represent with objects. For example, a
document editor can create a flyweight for each letter of the alphabet. Each flyweight stores a character code,
but its coordinate position in the document and its typographic style can be determined from the text layout
algorithms and formatting commands in effect wherever the character appears. The character codeisintrinsic
state, while the other information is extrinsic.

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4ffs.htm (1 of 11) [21/08/2002 19:14:39]

javascript:loadApplet()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4f.htm#relatedpatterns
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4f.htm#knownuses
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4f.htm#samplecode
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4f.htm#implementation
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4f.htm#consequences
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4f.htm#collaborations
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4f.htm#participants
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4f.htm#structure
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4f.htm#applicability
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4f.htm#motivation
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4f.htm#intent
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/helpfs.htm
javascript:build()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/patcafs.htm

Flyweight

Logically thereis an object for every occurrence of a given character in the document:

Physically, however, there is one shared flyweight object per character, and it appearsin different contextsin
the document structure. Each occurrence of a particular character object refers to the same instance in the shared
pool of flyweight objects:

flyweight pool

The class structure for these objects is shown next. Glyph isthe abstract class for graphical objects, some of
which may be flyweights. Operations that may depend on extrinsic state have it passed to them as a parameter.
For example, Draw and Intersects must know which context the glyph isin before they can do their job.

e Glyph -

DrawiContext)
fnlersects{FPoint. Contexi)

A

— 1 Row Character Column o
childran childran
Drraw(Context) Diraw] Context) Draw{Context)
Intersects{Point, Context) Intersects{Point, Contaxt) Intersects|Point, Context)
char ¢

A flyweight representing the letter "a" only stores the corresponding character code; it doesn't need to store its
location or font. Clients supply the context-dependent information that the flyweight needs to draw itself. For
example, a Row glyph knows where its children should draw themselves so that they are tiled horizontally.
Thusiit can pass each child its location in the draw request.

Because the number of different character objectsisfar less than the number of charactersin the document, the
total number of objectsis substantially less than what a naive implementation would use. A document in which
all characters appear in the same font and color will allocate on the order of 100 character objects (roughly the

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4ffs.htm (2 of 11) [21/08/2002 19:14:39]

Flyweight

size of the ASCI| character set) regardless of the document's length. And since most documents use no more
than 10 different font-color combinations, this number won't grow appreciably in practice. An object abstraction
thus becomes practical for individual characters.

* Applicability

The Flyweight pattern's effectiveness depends heavily on how and where it's used. Apply the Flyweight pattern
when all of the following are true:

. An application uses alarge number of objects.

. Storage costs are high because of the sheer quantity of objects.

. Most abject state can be made extrinsic.

. Many groups of objects may be replaced by relatively few shared objects once extrinsic state is removed.

. The application doesn't depend on object identity. Since flyweight objects may be shared, identity tests
will return true for conceptually distinct objects.

v Structure

FlyweightFactory .:;'fwmgms -J Flyweight
GetFiyweightlkey) ¢ OperationjextrinsicSlate)
3 i

il (fhyweight[key] exists) { =
refumn existing fliywaight;

ielse |
create new fyweight;
add it to pool of fhyweights;
refum the new fyweight;

— e ConcreteFlyweight —md UnsharedConcreteFlyweight
Operation{extrinsicStata) Cperation|extrinsicSiate)
intrinsicState allState

Client

The following object diagram shows how flyweights are shared:

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4ffs.htm (3 of 11) [21/08/2002 19:14:39]

Flyweight

e R v
)

Hyweaight
pexdd ¥
(aFlyweightFactory N r,_ aCannreteFrywelght_\] |'/_ aCnnnreteFlrweighﬁ

l\ﬂ!"“fﬁighls » . "'k‘;nlrlnslcﬁmle J "’erlnslnSmEe J

* Participants
. Flyweight
o declares an interface through which flyweights can receive and act on extrinsic state.
. ConcreteFlyweight (Character)

o implements the Flyweight interface and adds storage for intrinsic state, if any. A
ConcreteFlyweight object must be sharable. Any state it stores must be intrinsic; that is, it must
be independent of the ConcreteFlyweight object's context.

. UnsharedConcreteFlyweight (Row, Column)

o hot al Flyweight subclasses need to be shared. The Flyweight interface enables sharing; it doesn't
enforce it. It's common for UnsharedConcreteFlyweight objects to have ConcreteFlyweight
objects as children at some level in the flyweight object structure (as the Row and Column classes
have).

. FlyweightFactory
o creates and manages flyweight objects.

o ensures that flyweights are shared properly. When a client requests a flyweight, the
FlyweightFactory object supplies an existing instance or creates one, if none exists.

« Client
o maintains a reference to flyweight(s).

o computes or stores the extrinsic state of flyweight(s).

* Collaborations

. State that aflyweight needs to function must be characterized as either intrinsic or extrinsic. Intrinsic
state is stored in the ConcreteFlyweight object; extrinsic state is stored or computed by Client objects.
Clients pass this state to the flyweight when they invoke its operations.

. Clients should not instantiate ConcreteFlyweights directly. Clients must obtain ConcreteFlyweight
objects exclusively from the FlyweightFactory object to ensure they are shared properly.

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4ffs.htm (4 of 11) [21/08/2002 19:14:39]

Flyweight

¥ Consequences

Flyweights may introduce run-time costs associated with transferring, finding, and/or computing extrinsic state,
especialy if it was formerly stored as intrinsic state. However, such costs are offset by space savings, which
increase as more flyweights are shared.

Storage savings are afunction of several factors:
. thereduction in the total number of instances that comes from sharing
. theamount of intrinsic state per object
. Whether extrinsic state is computed or stored.

The more flyweights are shared, the greater the storage savings. The savings increase with the amount of shared
state. The greatest savings occur when the objects use substantial quantities of both intrinsic and extrinsic state,
and the extrinsic state can be computed rather than stored. Then you save on storage in two ways: Sharing
reduces the cost of intrinsic state, and you trade extrinsic state for computation time.

The Flyweight pattern is often combined with the Composite (163) pattern to represent a hierarchical structure
as agraph with shared leaf nodes. A consequence of sharing is that flyweight leaf nodes cannot store a pointer
to their parent. Rather, the parent pointer is passed to the flyweight as part of its extrinsic state. This has a major
impact on how the objects in the hierarchy communicate with each other.

¥ Implementation

Consider the following issues when implementing the Flyweight pattern:

1. Removing extrinsic state. The pattern's applicability is determined largely by how easy it isto identify
extrinsic state and remove it from shared objects. Removing extrinsic state won't help reduce storage
costsif there are as many different kinds of extrinsic state as there are objects before sharing. Ideally,
extrinsic state can be computed from a separate object structure, one with far smaller storage
requirements.

In our document editor, for example, we can store a map of typographic information in a separate
structure rather than store the font and type style with each character object. The map keeps track of runs
of characters with the same typographic attributes. When a character draws itself, it receivesits
typographic attributes as a side-effect of the draw traversal. Because documents normally use just afew
different fonts and styles, storing this information externally to each character object is far more efficient
than storing it internally.

2. Managing shared objects. Because objects are shared, clients shouldn't instantiate them directly.
FlyweightFactory lets clients locate a particul ar flyweight. FlyweightFactory objects often use an
associative store to let clients look up flyweights of interest. For example, the flyweight factory in the
document editor example can keep atable of flyweights indexed by character codes. The manager
returns the proper flyweight given its code, creating the flyweight if it does not already exist.

Sharability also implies some form of reference counting or garbage collection to reclaim aflyweight's
storage when it's no longer needed. However, neither is necessary if the number of flyweightsis fixed
and small (e.g., flyweights for the ASCII character set). In that case, the flyweights are worth keeping
around permanently.

v Sample Code

Returning to our document formatter example, we can definead yph base class for flyweight graphical

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4ffs.htm (5 of 11) [21/08/2002 19:14:39]

Flyweight

objects. Logically, glyphs are Composites (see Composite (163)) that have graphical attributes and can draw

themselves. Here we focus on just the font attribute, but the same approach can be used for any other graphical
attributes a glyph might have.

class dyph {
public:
virtual ~dyph();

virtual void Draw(Wndow*, d yphContext&);

virtual void SetFont(Font*, d yphContext&);
virtual Font* GetFont (d yphContext&);

virtual void First(d yphContext&);
virtual void Next(d yphContext&);
virtual bool |sDone(d yphContext&);
virtual dyph* Current(d yphContext&);

virtual void Insert(dyph*, dyphContext&);
virtual void Renove(d yphContext &) ;

pr ot ect ed:

} G yph();

The Char act er subclassjust stores a character code:

class Character : public dyph {
public:
Character(char);

virtual void Draw(Wndow", G yphContexté&);
private:
char _charcode;

s

To keep from allocating space for afont attribute in every glyph, we'll store the attribute extrinsically in a

d yphCont ext object. @ yphCont ext actsasarepository of extrinsic state. It maintains a compact
mapping between a glyph and its font (and any other graphical attributesit might have) in different contexts.
Any operation that needs to know the glyph's font in a given context will havead yphCont ext instance
passed to it as a parameter. The operation can then query the d yphCont ext for the font in that context. The
context depends on the glyph's location in the glyph structure. Therefore @ yph's child iteration and

mani pul ation operations must update the @ yphCont ext whenever they're used.

cl ass G yphContext {
public:
d yphCont ext () ;
virtual ~d yphContext();

virtual void Next(int step = 1);
virtual void Insert(int quantity = 1);

virtual Font* GetFont();

virtual void SetFont(Font*, int span = 1);
private:

int _index;

BTree* fonts;

s

G yphCont ext must be kept informed of the current position in the glyph structure during traversal.
G yphCont ext : : Next increments i ndex asthetraversal proceeds. G yph subclasses that have children

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4ffs.htm (6 of 11) [21/08/2002 19:14:39]

Flyweight

(e.g., Rowand Col umm) must implement Next sothat it calls@ yphCont ext : : Next at each point inthe
traversal.

d yphCont ext : : Get Font usestheindex asakey into aBTr ee structure that stores the glyph-to-font
mapping. Each node in the tree is |abeled with the length of the string for which it gives font information.
Leavesin the tree point to afont, while interior nodes break the string into substrings, one for each child.

Consider the following excerpt from a glyph composition:

|
P !
|] b B2 & E_E_I_ 8 _B_ A1V 13_ M I8 IR AT In_ 1R 2;_| : :
1 1 IOI 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | |
1 1 1 1 1 1 I =1 1 1 1 1 | 1 1 1 1 1 Ty
o |b|.]|E| L ,O,T, eng Ly IE:dl P T |g' -
] 1 | PSR RS [N (DU I [P DU [P RN [P R | __l__l__l__l__l__l__l__l__ | |
1 1
| | o _________1
! "

]
| []
I o o el |

[SH o & 5 K 07 T TR 1o 0s 108 a0y 108 MWER 1I0 111 1R 170

| |
e P:alolp.l ! 'e.x‘;’?e cit! itiol Ic! h"“ .
! I

I__I__I__I__I__I__I__I__I__I__I__I__I__I__I__I__I__I__I__

200 300 30 302 304 3 0L 308 HIF 3@ 300 30 31 393 ME 3 ME ED 317

! |
: 1 | | [| 1 | | | | | 1 | 1 | | 1 | :
osse g, 1 tieratior, Floo, |C)a; nu'" .
: I_J_J__I_J_J_J_J__I_J_J_J_J_J_J_J_J_J_J__ :
|

The BTr ee structure for font information might look like

300 199

6 194 o 1 °

=\ \

Times 24 Times-ltalic 12 Times 12 Time-Bold 12 Courier 24

Interior nodes define ranges of glyph indices. BTr ee is updated in response to font changes and whenever
glyphs are added to or removed from the glyph structure. For example, assuming we're at index 102 in the
traversal, the following code sets the font of each character in the word "expect” to that of the surrounding text
(thatis, ti mes12, aninstance of Font for 12-point Times Roman):

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4ffs.htm (7 of 11) [21/08/2002 19:14:39]

Flyweight

d yphCont ext gc;

Font* tinmesl2 = new Font (" Ti mes- Roman-12");

Font* tinesltalicl2 = new Font("Tinmes-Iltalic-12");
I

gc. Set Font (ti nes12, 6);

The new BTr ee structure (with changes shown in black) looks like

Times 12

Suppose we add the word "don't " (including atrailing space) in 12-point Times Italic before "expect." The
following code informs the gc¢ of this event, assuming it is still at index 102:

gc.Insert(6);
gc. Set Font (tinesltalicl2, 6);

The BTr ee structure becomes

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4ffs.htm (8 of 11) [21/08/2002 19:14:39]

Flyweight

306

Times-italic 12

When the d yphCont ext isqueried for the font of the current glyph, it descends the BTr ee, adding up
indices asit goes until it finds the font for the current index. Because the frequency of font changesisrelatively
low, the tree stays small relative to the size of the glyph structure. This keeps storage costs down without an
inordinate increase in look-up time.3

The last object we need is a FlyweightFactory that creates glyphs and ensures they're shared properly. Class
d yphFact ory instantiates Char act er and other kinds of glyphs. We only share Char act er objects;
composite glyphs are far less plentiful, and their important state (i.e., their children) isintrinsic anyway.

const int NCHARCODES = 128;

class G yphFactory {
public:
d yphFactory();
virtual ~d yphFactory();

virtual Character* CreateCharacter(char);
virtual Row CreateRow);
virtual Columm* CreateCol um();
/1
private:
Character* _charact er [NCHARCODES] ;

b

The _char act er array contains pointersto Char act er glyphsindexed by character code. The array is
initialized to zero in the constructor.

d yphFactory: : d yphFactory () {
for (int i = 0; i < NCHARCODES; ++i) {
_character[i] = 0;
}
}

Cr eat eChar act er looks up acharacter in the character glyph in the array, and it returns the corresponding
glyphif it exists. If it doesn't, then Cr eat eChar act er creates the glyph, putsit in the array, and returnsiit:

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4ffs.htm (9 of 11) [21/08/2002 19:14:39]

Flyweight

Character* d yphFactory:: CreateCharacter (char c¢) {
if (! _character[c]) {
_character[c] = new Character(c);
}

return _character[c];

}

The other operations simply instantiate a new object each time they're called, since noncharacter glyphs won't
be shared:

Row* G yphFactory::CreateRow () {
return new Row,
}

Col um* d yphFactory:: CreateColum () {
return new Col um;

}

We could omit these operations and let clients instantiate unshared glyphs directly. However, if we decide to
make these glyphs sharable later, we'll have to change client code that creates them.

* Known Uses

The concept of flyweight objects was first described and explored as a design technique in InterViews 3.0
[CL9Q]. Its developers built a powerful document editor called Doc as a proof of concept [CL92]. Doc uses
glyph objects to represent each character in the document. The editor builds one Glyph instance for each
character in a particular style (which defines its graphical attributes); hence a character's intrinsic state consists
of the character code and its style information (an index into a style table).4 That means only position is
extrinsic, making Doc fast. Documents are represented by a class Document, which also acts as the
FlyweightFactory. Measurements on Doc have shown that sharing flyweight charactersis quite effective. Ina
typical case, adocument containing 180,000 characters required allocation of only 480 character objects.

ET++ [WGM88] uses flyweights to support look-and-feel independence.2 The look-and-feel standard affects
the layout of user interface elements (e.g., scroll bars, buttons, menus—known collectively as "widgets') and
their decorations (e.g., shadows, beveling). A widget delegates al its layout and drawing behavior to a separate
Layout object. Changing the Layout object changes the look and feel, even at run-time.

For each widget class thereis a corresponding Layout class (e.g., ScrollbarLayout, MenubarLayout, etc.). An
obvious problem with this approach is that using separate layout objects doubles the number of user interface
objects: For each user interface object thereis an additional Layout object. To avoid this overhead, Layout
objects are implemented as flyweights. They make good flyweights because they deal mostly with defining
behavior, and it's easy to pass them what little extrinsic state they need to lay out or draw an object.

The Layout objects are created and managed by L ook objects. The Look classis an Abstract Factory (87) that
retrieves a specific Layout object with operations like GetButtonL ayout, GetM enuBarLayout, and so forth. For
each look-and-feel standard there is a corresponding Look subclass (e.g., MotifL ook, OpenLook) that supplies
the appropriate Layout objects.

By the way, Layout objects are essentially strategies (see Strategy (315)). They are an example of a strategy
object implemented as a flyweight.

v Related Patterns

The Flyweight pattern is often combined with the Composite (163) pattern to implement alogically hierarchical
structure in terms of a directed-acyclic graph with shared leaf nodes.

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4ffs.htm (10 of 11) [21/08/2002 19:14:39]

Flyweight

It's often best to implement State (305) and Strategy (315) objects as flyweights.

&

s Proxy
4 Facade

3L ook-up time in this scheme is proportional to the font change frequency. Worst-case performance occurs
when afont change occurs on every character, but that's unusual in practice.

4 In the Sample Code given earlier, style information is made extrinsic, leaving the character code as the only
intrinsic state.

SSee Abstract Factory (87) for another approach to look-and-feel independence.

Abstract Factory = Adapter = Bridge = Builder = Chain of Responsibility = Command = Composite =
Decorator = Facade * Factory Method = Flhyweight * Interpreter = Iterator + Mediator = Memento *
rver * Prototype « Proxy + Singleton « State « Strateqy * Template Method « Visitor

E_,._-
75}
15}

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4ffs.htm (11 of 11) [21/08/2002 19:14:39]

Proxy

©

SEARCH

Irtent

Also Known As
Motivation
Applicability
Structure
Participants
Collaborations
Consequences
Implementation
Sample Code
Known Uses
Related Patterns

Patiern Catalog | Conclusion

Proxy Object Structural

| Contents |Gui|:|t: to Hnﬂdu5| Glossary | Notation | Foundation | Bibliography | Index | Pattern Map |

Help | Intro | Case Study

v Intent

Provide a surrogate or placeholder for another object to control accessto it.

* Also Known As

Surrogate

* Motivation

One reason for controlling access to an object is to defer the full cost of its creation and initialization until
we actually need to use it. Consider a document editor that can embed graphical objects in a document.
Some graphical objects, like large raster images, can be expensive to create. But opening a document should
be fast, so we should avoid creating all the expensive objects at once when the document is opened. This
isn't necessary anyway, because not al of these objects will be visible in the document at the same time.

These constraints would suggest creating each expensive object on demand, which in this case occurs when
an image becomes visible. But what do we put in the document in place of the image? And how can we hide
the fact that the image is created on demand so that we don't complicate the editor's implementation? This
optimization shouldn't impact the rendering and formatting code, for example.

The solution is to use another object, an image proxy, that acts as a stand-in for the real image. The proxy
actsjust like the image and takes care of instantiating it when it's required.

(_a'l'extl:lanument)

L_image [

animageProxy

fileMame w----- ;J_ _____

animage -\|

I

It memony

The image proxy creates the real image only when the document editor asksiit to display itself by invoking
its Draw operation. The proxy forwards subsequent requests directly to the image. It must therefore keep a
reference to the image after creating it.

Let's assume that images are stored in separate files. In this case we can use the file name as the reference to
the real object. The proxy aso storesits extent, that is, its width and height. The extent |ets the proxy
respond to requests for its size from the formatter without actually instantiating the image.

The following class diagram illustrates this example in more detail.

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4gfs.htm (1 of 10) [21/08/2002 19:14:56]

javascript:loadApplet()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4g.htm#relatedpatterns
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4g.htm#knownuses
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4g.htm#samplecode
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4g.htm#implementation
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4g.htm#consequences
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4g.htm#collaborations
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4g.htm#participants
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4g.htm#structure
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4g.htm#applicability
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4g.htm#motivation
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4g.htm#alsoknownas
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4g.htm#intent
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/helpfs.htm
javascript:build()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/patcafs.htm

Proxy

DocumentEditor —I-OIW
Diraw()
GatExtent;)
Stare()
Loady)
Image - - - - -1 ImageProxy if (image == 0) { T
_ image = Loadimage(fileMNama);
Diraw() IMage| praw() o]
GelExtent() GelExtent(} o-F----= mage->Dirawl)
Store{) Sloref) !
] if {image == 0} {
Loadl Hoadt Ialaiiabint | retu‘m extant;
. . oise
gnigrﬁlmp 2"";:3:“3 , retum image-=GelExtant();
% %

The document editor accesses embedded images through the interface defined by the abstract Graphic class.
ImageProxy is a class for images that are created on demand. ImageProxy maintains the file name as a
reference to the image on disk. The file name is passed as an argument to the ImageProxy constructor.

ImageProxy also stores the bounding box of the image and areference to the real Image instance. This
reference won't be valid until the proxy instantiates the real image. The Draw operation makes sure the
image is instantiated before forwarding it the request. GetExtent forwards the request to the image only if it's
instantiated; otherwise ImageProxy returns the extent it stores.

* Applicability

Proxy is applicable whenever there is a need for amore versatile or sophisticated reference to an object than
asimple pointer. Here are several common situations in which the Proxy pattern is applicable:

1. A remote proxy provides alocal representative for an object in a different address space.
NEXTSTEP [Add94] uses the class NXProxy for this purpose. Coplien [Cop92] calls this kind of
proxy an "Ambassador."

2. A virtual proxy creates expensive objects on demand. The ImageProxy described in the Motivation
is an example of such a proxy.

3. A protection proxy controls access to the original object. Protection proxies are useful when objects
should have different access rights. For example, Kernel Proxies in the Choices operating system
[CIRM 93] provide protected access to operating System objects.

4. A smart reference isareplacement for abare pointer that performs additional actions when an
object is accessed. Typical usesinclude

o counting the number of referencesto the real object so that it can be freed automatically when
there are no more references (also called smart pointers[Ede92]).

o loading a persistent object into memory when it's first referenced.

o checking that the real object islocked before it's accessed to ensure that no other object can
changeit.

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4gfs.htm (2 of 10) [21/08/2002 19:14:56]

Proxy

* Structure

Subject
Requast)

RealSubject ‘M Proxy

Request(} Request() o-fF---—-——---- realZubject-=Request();

Here's a possible object diagram of a proxy structure at run-time:

(" aClient A _
: aP
k subject -~ roxy aRealSubject \|
realSubject - ~ _)

v Participants

. Proxy (ImageProxy)

o maintains areference that lets the proxy access the real subject. Proxy may refer to a Subject
if the Real Subject and Subject interfaces are the same.

o provides an interface identical to Subject's so that a proxy can by substituted for the real
subject.

o controls access to the real subject and may be responsible for creating and deleting it.
o other responsibilities depend on the kind of proxy:

« remote proxies are responsible for encoding a request and its arguments and for
sending the encoded request to the real subject in a different address space.

« Virtual proxies may cache additional information about the real subject so that they can
postpone accessing it. For example, the ImageProxy from the Motivation caches the
real image's extent.

=« protection proxies check that the caller has the access permissions required to perform
areguest.

. Subject (Graphic)

o defines the common interface for Real Subject and Proxy so that a Proxy can be used
anywhere a Real Subject is expected.

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4gfs.htm (3 of 10) [21/08/2002 19:14:56]

Proxy

. RealSubject (Image)

o definesthe real object that the proxy represents.

* Collaborations

. Proxy forwards requests to Real Subject when appropriate, depending on the kind of proxy.

¥ Consequences

The Proxy pattern introduces alevel of indirection when accessing an object. The additional indirection has
many uses, depending on the kind of proxy:

1. A remote proxy can hide the fact that an object resides in a different address space.
2. A virtua proxy can perform optimizations such as creating an object on demand.

3. Both protection proxies and smart references allow additional housekeeping tasks when an object is
accessed.

There's another optimization that the Proxy pattern can hide from the client. It's called copy-on-write, and
it'srelated to creation on demand. Copying alarge and complicated object can be an expensive operation. If
the copy is never modified, then there's no need to incur this cost. By using a proxy to postpone the copying
process, we ensure that we pay the price of copying the object only if it's modified.

To make copy-on-write work, the subject must be reference counted. Copying the proxy will do nothing
more than increment this reference count. Only when the client requests an operation that modifies the
subject does the proxy actually copy it. In that case the proxy must also decrement the subject's reference
count. When the reference count goes to zero, the subject gets deleted.

Copy-on-write can reduce the cost of copying heavyweight subjects significantly.

v Implementation

The Proxy pattern can exploit the following language features:

1. Overloading the member access operator in C++. C++ supports overloading oper at or - >, the
member access operator. Overloading this operator lets you perform additional work whenever an
object is dereferenced. This can be helpful for implementing some kinds of proxy; the proxy behaves
just like a pointer.

The following example illustrates how to use this technique to implement a virtual proxy called
| magePtr.

cl ass | mage;
extern | mage* LoadAnl mageFil e(const char*);
/'l external function

class I magePtr {

public:
| mgePtr(const char* imageFile);
virtual ~lmagePtr();

virtual |nmage* operator->();

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4gfs.htm (4 of 10) [21/08/2002 19:14:56]

Proxy

virtual |mage& operator*();
privat e:

| mage* Loadl mage();
privat e:

| mage* _image;

const char* _inmageFil e;

}

I magePtr:: I magePtr (const char* thelmageFile) {
_imageFil e = thel mageFi | e;
_image = 0O;

}

| mage* | nmagePtr::Loadl mage () {
if (_image == 0) {
_image = LoadAnl mageFi | e(_i mageFil e);
}

return _imge;

}

The overloaded - > and * operators use Loadl mage to return _i mage to calers (loading it if
necessary).

| mage* | magePtr::operator-> () {
return Loadl mage();
}

| mage& | magePtr::operator* () {
return *Loadl mage();
}

This approach letsyou call | mage operations through | magePt r objects without going to the
trouble of making the operations part of the | magePt r interface:

| mgePtr inmage = | nmagePtr("anl mageFi | eNane");
i mage- >Dr awm(Poi nt (50, 100));
/1 (image. operator->())->Draw Poi nt (50, 100))

Notice how thei mage proxy acts like a pointer, but it's not declared to be a pointer to an | mage.
That means you can't use it exactly like areal pointer to an | mage. Hence clients must treat | mage
and | magePt r objects differently in this approach.

Overloading the member access operator isn't a good solution for every kind of proxy. Some proxies
need to know precisely which operation is called, and overloading the member access operator
doesn't work in those cases.

Consider the virtual proxy example in the Moativation. The image should be loaded at a specific
time—namely when the Draw operation is called—and not whenever the image is referenced.
Overloading the access operator doesn't allow this distinction. In that case we must manually
implement each proxy operation that forwards the request to the subject.

These operations are usually very similar to each other, as the Sample Code demonstrates. Typically
all operations verify that the request islegal, that the original object exists, etc., before forwarding
the request to the subject. It's tedious to write this code again and again. So it's common to use a
preprocessor to generate it automatically.

2. Using doesNot Under st and in Smalltalk. Smalltalk provides a hook that you can use to support

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4gfs.htm (5 of 10) [21/08/2002 19:14:56]

Proxy

automatic forwarding of requests. Smalltalk callsdoesNot Under st and: aMessage whena
client sends a message to areceiver that has no corresponding method. The Proxy class can redefine
doesNot Under st and so that the message is forwarded to its subject.

To ensure that arequest is forwarded to the subject and not just absorbed by the proxy silently, you
can define a Proxy class that doesn't understand any messages. Smalltalk lets you do this by defining
Proxy as a class with no superclass.6

The main disadvantage of doesNot Under st and: isthat most Smalltalk systems have afew
special messages that are handled directly by the virtual machine, and these do not cause the usual
method look-up. The only one that's usually implemented in Object (and so can affect proxies) isthe
identity operation ==.

If you're going to use doesNot Under st and: to implement Proxy, then you must design around
this problem. Y ou can't expect identity on proxies to mean identity on their real subjects. An added
disadvantage isthat doesNot Under st and: was developed for error handling, not for building
proxies, and so it's generally not very fast.

3. Proxy doesn't always have to know the type of real subject. If a Proxy class can deal with its subject
solely through an abstract interface, then there's no need to make a Proxy class for each Real Subject
class; the proxy can deal with all Real Subject classes uniformly. But if Proxies are going to
instantiate Real Subjects (such asin avirtual proxy), then they have to know the concrete class.

Another implementation issue involves how to refer to the subject before it's instantiated. Some proxies have
to refer to their subject whether it's on disk or in memory. That means they must use some form of address
space-independent object identifiers. We used afile name for this purpose in the Motivation.

» Sample Code

The following code implements two kinds of proxy: the virtual proxy described in the Motivation section,
and a proxy implemented with doesNot Under st and: .7

1. Avirtual proxy. The G aphi c class defines the interface for graphical objects:

cl ass Graphic {
publi c:
virtual ~Gaphic();

virtual void Draw(const Point& at) = 0;
virtual void Handl eMouse(Event & event) = O;

virtual const Point& GetExtent() = O;
virtual void Load(istrean& fron) = 0;
virtual void Save(ostream& to) = O;
pr ot ect ed:
Graphic();
1

Thel mage classimplementsthe Gr aphi c interface to display imagefiles. | mage overrides
Handl eMbuse to let usersresize the image interactively.

class Image : public Gaphic {

publi c:
| mage(const char* file); // loads inmage froma file
virtual ~lImge();

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4gfs.htm (6 of 10) [21/08/2002 19:14:56]

Proxy

virtual void Draw(const Point& at);
virtual void Handl eMouse(Event & event);

virtual const Point& GetExtent();

virtual void Load(istream& from;

virtual void Save(ostrean& to);
private:

I

H
| magePr oxy hasthe sameinterface as| mage:

cl ass I mageProxy : public G aphic {
publi c:
| magePr oxy(const char* inmageFile);
virtual ~ImageProxy();

virtual void Draw(const Point& at);
virtual void Handl eMouse(Event & event);

virtual const Point& GetExtent();

virtual void Load(istream& from;

virtual void Save(ostrean& to);
pr ot ect ed:

| mge* Cetl mage();
private:

| mage* _image;

Poi nt _extent;

char* _fil eNane;

}

The constructor saves alocal copy of the name of the file that stores the image, and it initializes
_extent and _i nage:

| mageProxy: : | mageProxy (const char* fileNane) {
_fileName = strdup(fil eNane);
_extent = Point::Zero; [// don't know extent yet
_image = 0;

}

| mage* | mageProxy:: Getlmge() {
if (_image == 0) {
_image = new I mage(_fil eNane);
}

return _image;

}

The implementation of Get Ext ent returns the cached extent if possible; otherwise theimageis
loaded from the file. Dr aw loads the image, and Handl eMbuse forwards the event to the real
image.

const Pointé& | mageProxy:: Get Extent () {
if (_extent == Point::Zero) {
_extent = Cetlnmage()->GCGet Extent();
}

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4gfs.htm (7 of 10) [21/08/2002 19:14:56]

Proxy

return _extent;

}

voi d | mageProxy::Draw (const Point& at) {
Get | mage() - >Draw(at) ;
}

voi d | magePr oxy: : Handl eMouse (Event & event) {
Get | mage() - >Handl eMouse(event) ;
}

The Save operation saves the cached image extent and the image file name to a stream. Load
retrieves this information and initializes the corresponding members.

voi d | mageProxy:: Save (ostream& to) {
to << _extent << fileNane;
}

voi d | mageProxy::Load (istream& from {
from>> extent >> fil eNaneg;
}

Finally, suppose we have aclass Text Docunent that can contain G aphi ¢ objects:

cl ass Text Docunent {
publi c:
Text Docurnent () ;

voi d I nsert (G aphic*);
I
¥

We caninsert an | magePr oxy into atext document like this:

Text Docunent * text = new Text Docunent;
...
t ext ->I nsert (new | magePr oxy("anl mageFi | eNane")) ;

2. Proxiesthat use doesNot Under st and. You can make generic proxiesin Smalltalk by defining
classes whose superclassis nil8 and defining the doesNot Under st and: method to handle
messages.

The following method assumes the proxy hasar eal Subj ect method that returnsits real subject.
In the case of ImageProxy, this method would check to seeif the the Image had been created, create
it if necessary, and finally returnit. It usesper f or m wi t hAr gunent s: to perform the message
being trapped on the real subject.

doesNot Under st and: aMessage
N sel f real Subj ect
perform aMessage sel ector
wi t hArgunents: aMessage argunents

The argument to doesNot Under st and: isan instance of Message that represents the message
not understood by the proxy. So the proxy responds to all messages by making sure that the real
subject exists before forwarding the message to it.

One of the advantages of doesNot Under st and: isit can perform arbitrary processing. For

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4gfs.htm (8 of 10) [21/08/2002 19:14:56]

Proxy

example, we could produce a protection proxy by specifying aset | egal Messages of messagesto
accept and then giving the proxy the following method:

doesNot Under st and: aMessage
N (1l egal Messages i ncludes: aMessage sel ector)
i fTrue: [self real Subject
perform aMessage sel ector
Wi t hArgunents: aMessage ar gunents]
i fFalse: [self error: "Illegal operator']

This method checks to see that amessage is legal before forwarding it to the real subject. If itisn't
legal, then it will send er r or : to the proxy, which will result in an infinite loop of errors unless the
proxy defineser r or : . Consequently, the definition of er r or : should be copied from class Object
along with any methods it uses.

* Khnown Uses

The virtual proxy example in the Motivation section is from the ET++ text building block classes.

NEXTSTEP [Add94] uses proxies (instances of class NXProxy) aslocal representatives for objects that may

be distributed. A server creates proxies for remote objects when clients request them. On receiving a
message, the proxy encodes it along with its arguments and then forwards the encoded message to the
remote subject. Similarly, the subject encodes any return results and sends them back to the NXProxy
object.

McCullough [McC87] discusses using proxiesin Smalltalk to access remote objects. Pascoe [Pas36]
describes how to provide side-effects on method calls and access control with "Encapsulators.”

* Related Patterns

Adapter (139): An adapter provides a different interface to the object it adapts. In contrast, a proxy provides

the same interface as its subject. However, a proxy used for access protection might refuse to perform an
operation that the subject will perform, so its interface may be effectively a subset of the subject's.

Decorator (175): Although decorators can have similar implementations as proxies, decorators have a

different purpose. A decorator adds one or more responsibilities to an object, whereas a proxy controls
access to an object.

Proxies vary in the degree to which they are implemented like a decorator. A protection proxy might be
implemented exactly like a decorator. On the other hand, a remote proxy will not contain a direct reference
to itsreal subject but only an indirect reference, such as "host 1D and local address on host.” A virtual proxy
will start off with an indirect reference such as a file name but will eventually obtain and use a direct
reference.

Y
p Discussion of Structural Patterns

4 Flyweight

6The implementation of distributed objectsin NEXTSTEP [Add94] (specifically, the class NXProxy) uses
this technique. The implementation redefinesf or war d, the equivalent hook in NEXTSTEP.

Iterator (257) describes another kind of proxy on page 266.

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4gfs.htm (9 of 10) [21/08/2002 19:14:56]

Proxy

8Almost all classes ultimately have Object as their superclass. Hence this is the same as saying "defining a
class that doesn't have Object asits superclass.”

Abstract Factory = Adapter = Bridge * Builder = Chain of Responsibility * Command » Composite »
orator * Facade * Factory Method = Flyweight « Interpreter = lterator = Mediator + Memento *
Observer * Prototype « Proxy + Singleton » State » Strategy + Template Method « Visitor

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4gfs.htm (10 of 10) [21/08/2002 19:14:56]

Discussion of Structural Patterns

G) Discussion of Case Study | Pattern Catalog | Conclusion
SEAREH Structural Patterns

| Contents |Guide1nﬂeﬂders| Glossary | Notation | Foundation | Bibliography | Index | Pniternl.h:|

Adapter versus
Bridge

Cmn!m:ilt': Y ou may have noticed similarities between the structural patterns, especialy in their participants and

1200 G collaborations. Thisis so probably because structural patterns rely on the same small set of language
LD LV mechanisms for structuring code and objects: single and multiple inheritance for class-based patterns,
and object composition for object patterns. But the similarities belie the different intents among these
patterns. In this section we compare and contrast groups of structural patternsto give you afeel for their
relative merits.

v Adapter versus Bridge

The Adapter (139) and Bridge (151) patterns have some common attributes. Both promote flexibility by

providing alevel of indirection to another object. Both involve forwarding requests to this object from an
interface other than its own.

The key difference between these patterns liesin their intents. Adapter focuses on resolving
incompatibilities between two existing interfaces. It doesn't focus on how those interfaces are
implemented, nor does it consider how they might evolve independently. It's away of making two
independently designed classes work together without reimplementing one or the other. Bridge, on the
other hand, bridges an abstraction and its (potentially numerous) implementations. It provides a stable
interface to clients even as it lets you vary the classes that implement it. It also accommodates new
implementations as the system evolves.

Asaresult of these differences, Adapter and Bridge are often used at different points in the software
lifecycle. An adapter often becomes necessary when you discover that two incompatible classes should
work together, generally to avoid replicating code. The coupling is unforeseen. In contrast, the user of a
bridge understands up-front that an abstraction must have several implementations, and both may evolve
independently. The Adapter pattern makes things work after they're designed; Bridge makes them work
before they are. That doesn't mean Adapter is somehow inferior to Bridge; each pattern merely addresses
adifferent problem.

Y ou might think of afacade (see Facade (185)) as an adapter to a set of other objects. But that

interpretation overlooks the fact that a facade defines a new interface, whereas an adapter reuses an old
interface. Remember that an adapter makes two existing interfaces work together as opposed to defining
an entirely new one.

v Composite versus Decorator versus Proxy

Composite (163) and Decorator (175) have similar structure diagrams, reflecting the fact that both rely
on recursive composition to organize an open-ended number of objects. This commonality might tempt
you to think of a decorator object as a degenerate composite, but that misses the point of the Decorator
pattern. The similarity ends at recursive composition, again because of differing intents.

Decorator is designed to let you add responsibilities to objects without subclassing. It avoids the
explosion of subclasses that can arise from trying to cover every combination of responsibilities
statically. Composite has a different intent. It focuses on structuring classes so that many related objects
can be treated uniformly, and multiple objects can be treated as one. Its focusis not on embellishment but
on representation.

These intents are distinct but complementary. Consequently, the Composite and Decorator patterns are

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/disc4fs.htm (1 of 2) [21/08/2002 19:16:25]

javascript:loadApplet()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/disc4.htm#compvsdec
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/disc4.htm#versus
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/helpfs.htm
javascript:build()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/patcafs.htm

Discussion of Structural Patterns

often used in concert. Both lead to the kind of design in which you can build applications just by
plugging objects together without defining any new classes. There will be an abstract class with some
subclasses that are composites, some that are decorators, and some that implement the fundamental
building blocks of the system. In this case, both composites and decorators will have a common
interface. From the point of view of the Decorator pattern, a composite is a ConcreteComponent. From
the point of view of the Composite pattern, a decorator is aLeaf. Of course, they don't have to be used
together and, as we have seen, their intents are quite different.

Another pattern with a structure similar to Decorator's is Proxy (207). Both patterns describe how to
provide alevel of indirection to an object, and the implementations of both the proxy and decorator
object keep areference to another object to which they forward requests. Once again, however, they are
intended for different purposes.

Like Decorator, the Proxy pattern composes an object and provides an identical interface to clients.
Unlike Decorator, the Proxy pattern is not concerned with attaching or detaching properties dynamicaly,
and it's not designed for recursive composition. Itsintent is to provide a stand-in for a subject when it's
inconvenient or undesirable to access the subject directly because, for example, it lives on aremote
machine, has restricted access, or is persistent.

In the Proxy pattern, the subject defines the key functionality, and the proxy provides (or refuses) access
toit. In Decorator, the component provides only part of the functionality, and one or more decorators
furnish the rest. Decorator addresses the situation where an object's total functionality can't be
determined at compile time, at least not conveniently. That open-endedness makes recursive composition
an essential part of Decorator. That isn't the case in Proxy, because Proxy focuses on one
relationship—between the proxy and its subject—and that relationship can be expressed statically.

These differences are significant because they capture solutions to specific recurring problems in object-
oriented design. But that doesn't mean these patterns can't be combined. Y ou might envision a proxy-
decorator that adds functionality to a proxy, or a decorator-proxy that embellishes a remote object.
Although such hybrids might be useful (we don't have real examples handy), they are divisible into
patterns that are useful.

A
p Behavioral Patterns

4 Proxy

y
Abstract Factory = Adapter » Bridge * Builder + Chain of Responsibility * Command « Composite «
Decorator * Facade » Factory Method * Flyweight = Imterpreter » lterator = Mediator = Memento »
Observer * Prototype + Proxy + Singleton » State » Strategy + Template Method + Visitor

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/disc4fs.htm (2 of 2) [21/08/2002 19:16:25]

Behavioral Patterns

Case Study | Pattern Catalog | Conclusion

SEARCH

| Contents |ﬁ.|i|:|ntu Hﬂﬂdﬂ'5| Glossary | Notation | Foundation | Bibliography | Index | Pattern Map |

Behavioral patterns are concerned with algorithms and the assignment of responsibilities between
objects. Behavioral patterns describe not just patterns of objects or classes but also the patterns of
communication between them. These patterns characterize complex control flow that's difficult to follow
at run-time. They shift your focus away from flow of control to let you concentrate just on the way
objects are interconnected.

Behavioral class patterns use inheritance to distribute behavior between classes. This chapter includes
two such patterns. Template Method (325) is the simpler and more common of the two. A template
method is an abstract definition of an algorithm. It defines the algorithm step by step. Each step invokes
either an abstract operation or a primitive operation. A subclass fleshes out the algorithm by defining the
abstract operations. The other behavioral class pattern is Interpreter (243), which represents a grammar as
aclass hierarchy and implements an interpreter as an operation on instances of these classes.

Behavioral object patterns use object composition rather than inheritance. Some describe how a group of
peer objects cooperate to perform atask that no single object can carry out by itself. An important issue
here is how peer objects know about each other. Peers could maintain explicit references to each other,
but that would increase their coupling. In the extreme, every object would know about every other. The
Mediator (273) pattern avoids this by introducing a mediator object between peers. The mediator

provides the indirection needed for loose coupling.

Chain of Responsihility (223) provides even looser coupling. It lets you send requests to an object
implicitly through a chain of candidate objects. Any candidate may fulfill the request depending on run-
time conditions. The number of candidates is open-ended, and you can select which candidates
participate in the chain at run-time.

The Observer (293) pattern defines and maintains a dependency between objects. The classic example of

Observer isin Smaltalk Model/View/Controller, where all views of the model are notified whenever the
model's state changes.

Other behavioral object patterns are concerned with encapsulating behavior in an object and delegating
requests to it. The Strategy (315) pattern encapsulates an algorithm in an object. Strategy makesit easy to

specify and change the algorithm an object uses. The Command (233) pattern encapsulates a request in

an object so that it can be passed as a parameter, stored on a history list, or manipulated in other ways.
The State (305) pattern encapsul ates the states of an object so that the object can change its behavior

when its state object changes. Visitor (331) encapsulates behavior that would otherwise be distributed
across classes, and Iterator (257) abstracts the way you access and traverse objects in an aggregate.

A
p Chain of Responsibility
4 Discussion of Structural Patterns

Abstract Factory = Adapter » Bridge * Builder + Chain of Responsibility » Command « Composite «
Decorator * Facade » Factory Method * Flyweight = Imterpreter » lterator = Mediator = Memento »
Observer = Prototype « Proxy + Singleton = State + Strategy *+ Template Method + Visitor

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap5fs.htm [21/08/2002 19:16:42]

javascript:loadApplet()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/helpfs.htm
javascript:build()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/patcafs.htm

Chain of Responsibility

©

SEARCH

Intent
Mativation
Applicability
Structure
Participants
Collaborations
Consequences
Implementation
Sample Code
Known Uses
Related Patterns

Pattern Catalog | Conclusion

Case Study

Chain of
Responsibility Object Behavioral

| Contents |ﬁ.|i|:|ntu Hﬂﬂdﬂ'5| Glossary | Notation | Foundation | Bibliography | Index | Pattern Map |

v Intent

Avoid coupling the sender of arequest to its receiver by giving more than one object a chance to handle
the request. Chain the receiving objects and pass the request along the chain until an object handlesit.

* Motivation

Consider a context-sensitive help facility for a graphical user interface. The user can obtain help
information on any part of the interface just by clicking on it. The help that's provided depends on the
part of the interface that's selected and its context; for example, a button widget in a dialog box might
have different help information than a similar button in the main window. If no specific help information
exists for that part of the interface, then the help system should display a more general help message
about the immediate context—the dialog box as awhole, for example.

Hence it's natural to organize help information according to its generality—from the most specific to the
most general. Furthermore, it's clear that a help request is handled by one of several user interface
objects; which one depends on the context and how specific the available helpis.

The problem hereis that the object that ultimately provides the help isn't known explicitly to the object
(e.g., the button) that initiates the help request. What we need is away to decouple the button that
initiates the help request from the objects that might provide help information. The Chain of
Responsibility pattern defines how that happens.

The idea of this pattern is to decouple senders and receivers by giving multiple objects a chance to handle
areguest. The request gets passed along a chain of objects until one of them handlesiit.

(asaveDialog

handl
(aPrinthtun \I L\ i anfApplication -W
L\ handler handlar J
aPrintDialog
handler v
(anﬂlﬂﬂuﬂnn /I
k_handler r’f _)I
spacific gemaral

The first object in the chain receives the request and either handlesit or forwards it to the next candidate
on the chain, which does likewise. The object that made the request has no explicit knowledge of who
will handle it—we say the request has an implicit receiver.

Let's assume the user clicks for help on a button widget marked "Print." The button is contained in an
instance of PrintDialog, which knows the application object it belongs to (see preceding object diagram).
The following interaction diagram illustrates how the help request gets forwarded along the chain:

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5afs.htm (1 of 9) [21/08/2002 19:17:00]

javascript:loadApplet()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5a.htm#relatedpatterns
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5a.htm#knownuses
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5a.htm#samplecode
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5a.htm#implementation
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5a.htm#consequences
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5a.htm#collaborations
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5a.htm#participants
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5a.htm#structure
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5a.htm#applicability
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5a.htm#motivation
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5a.htm#intent
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/helpfs.htm
javascript:build()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/patcafs.htm

Chain of Responsibility

aPrintButton aPrintDialog anApplication
1
HandleHelp()
HandleHelp()
T ﬂ

In this case, neither aPrintButton nor aPrintDialog handles the request; it stops at anApplication, which
can handleit or ignoreit. The client that issued the request has no direct reference to the object that
ultimately fulfillsit.

To forward the request along the chain, and to ensure receivers remain implicit, each object on the chain
shares a common interface for handling requests and for accessing its successor on the chain. For
example, the help system might define a HelpHandler class with a corresponding HandleHelp operation.
HelpHandler can be the parent class for candidate object classes, or it can be defined as amixin class.
Then classes that want to handle help requests can make HelpHandler a parent:

handler
HelpHandier
L e HandieMelp{) o]--—-- nanumr_}HarmleHaip{;h
| |
Application Widget
— __l | — if handle {]
- can na
Dialog Button ShowHelp()
}alse |
HarndleHelp{} ©~F---- Handier::HandleHelg()
ShowHelp() 1

The Button, Dialog, and Application classes use HelpHandler operations to handle help requests.
HelpHandler's HandleHelp operation forwards the request to the successor by default. Subclasses can
override this operation to provide help under the right circumstances; otherwise they can use the default
implementation to forward the request.

v Applicability
Use Chain of Responsibility when

. more than one object may handle arequest, and the handler isn't known a priori. The handler
should be ascertained automatically.

. you want to issue arequest to one of several objects without specifying the receiver explicitly.

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5afs.htm (2 of 9) [21/08/2002 19:17:00]

Chain of Responsibility

. the set of objects that can handle a request should be specified dynamically.

v Structure

SUCCEESO
Client w- Handler
HandleRaquesty)
I I
ConcreteHandler1 ConcreteHandler2
HandieRequest() HandleReguast()
A typical object structure might look like this:
=
(-nﬂléant ~,
aConcreteHandler
l\aHandIer [— aCumreteHandier\I
SUCCESS0F - .
SUCCES50T _/I

v Participants

. Handler (HelpHandler)
o defines an interface for handling requests.
o (optional) implements the successor link.
. ConcreteHandler (PrintButton, PrintDial og)
o handlesrequestsit isresponsible for.
o Can access its successor.

o if the ConcreteHandler can handle the request, it does so; otherwise it forwards the request
to its successor.

. Client

o initiates the request to a ConcreteHandler object on the chain.

v Collaborations

. When aclient issues a request, the request propagates along the chain until a ConcreteHandler
object takes responsibility for handling it.

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5afs.htm (3 of 9) [21/08/2002 19:17:00]

Chain of Responsibility

v Consequences

Chain of Responsibility has the following benefits and liabilities:

1. Reduced coupling. The pattern frees an object from knowing which other object handles arequest.
An object only has to know that a request will be handled "appropriately.” Both the receiver and
the sender have no explicit knowledge of each other, and an object in the chain doesn't haveto
know about the chain's structure.

Asaresult, Chain of Responsibility can simplify object interconnections. Instead of objects
maintaining references to all candidate receivers, they keep a single reference to their successor.

2. Added flexibility in assigning responsibilities to objects. Chain of Responsibility gives you added
flexibility in distributing responsibilities among objects. Y ou can add or change responsibilities
for handling arequest by adding to or otherwise changing the chain at run-time. Y ou can combine
this with subclassing to specialize handlers statically.

3. Receipt isn't guaranteed. Since arequest has no explicit receiver, there's no guaranteeit'll be
handled—the request can fall off the end of the chain without ever being handled. A request can
also go unhandled when the chain is not configured properly.

v Implementation

Here are implementation issues to consider in Chain of Responsibility:
1. Implementing the successor chain. There are two possible ways to implement the successor chain:

a. Define new links (usually in the Handler, but ConcreteHandlers could define them
instead).

b. Useexisting links.

Our examples so far define new links, but often you can use existing object references to form the
successor chain. For example, parent references in a part-whole hierarchy can define a part's
successor. A widget structure might already have such links. Composite (163) discusses parent
references in more detail.

Using existing links works well when the links support the chain you need. It saves you from
defining links explicitly, and it saves space. But if the structure doesn't reflect the chain of
responsibility your application requires, then you'll have to define redundant links.

2. Connecting successors. If there are no preexisting references for defining a chain, then you'll have
to introduce them yourself. In that case, the Handler not only defines the interface for the requests
but usually maintains the successor as well. That lets the handler provide a default implementation
of HandleRequest that forwards the request to the successor (if any). If a ConcreteHandler
subclassisn't interested in the request, it doesn't have to override the forwarding operation, since
its default implementation forwards unconditionally.

Here's a HelpHandler base class that maintains a successor link:

cl ass Hel pHandl er {
publi c:

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5afs.htm (4 of 9) [21/08/2002 19:17:00]

Chain of Responsibility

Hel pHandl er (Hel pHandl er* s) : _successor(s) { }
virtual void Handl eHel p();

private:
Hel pHandl er* _successor;

b

voi d Hel pHandl er:: Handl eHel p () {
if (_successor) {
_successor - >Handl eHel p();
}

}

3. Representing requests. Different options are available for representing requests. In the simplest
form, the request is a hard-coded operation invocation, as in the case of HandleHelp. Thisis
convenient and safe, but you can forward only the fixed set of requests that the Handler class
defines.

An aternative is to use asingle handler function that takes a request code (e.g., an integer
constant or a string) as parameter. This supports an open-ended set of requests. The only
requirement is that the sender and receiver agree on how the request should be encoded.

This approach is more flexible, but it requires conditional statements for dispatching the request
based on its code. Moreover, there's no type-safe way to pass parameters, so they must be packed
and unpacked manually. Obvioudly thisisless safe than invoking an operation directly.

To address the parameter-passing problem, we can use separate request objects that bundle
request parameters. A Request class can represent requests explicitly, and new kinds of requests
can be defined by subclassing. Subclasses can define different parameters. Handlers must know
the kind of request (that is, which Request subclass they're using) to access these parameters.

To identify the request, Request can define an accessor function that returns an identifier for the
class. Alternatively, the receiver can use run-time type information if the implementation
languages supportsit.

Here is a sketch of adispatch function that uses request objects to identify requests. A Get Ki nd
operation defined in the base Request classidentifies the kind of request:

voi d Handl er:: Handl eRequest (Request* theRequest) {
swtch (theRequest->CGetKind()) {
case Hel p:
/'l cast argument to appropriate type
Handl eHel p((Hel pRequest *) t heRequest);
br eak;

case Print:
Handl ePri nt ((Pri nt Request*) theRequest);
/1

br eak;

defaul t:
[/
br eak;

}

Subclasses can extend the dispatch by overriding Handl eRequest . The subclass handles only

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5afs.htm (5 of 9) [21/08/2002 19:17:00]

Chain of Responsibility

the requests in which it'sinterested; other requests are forwarded to the parent class. In thisway,
subclasses effectively extend (rather than override) the Handl eRequest operation. For
example, here'show an Ext endedHandl er subclass extends Handl er 's version of

Handl eRequest :

cl ass ExtendedHandl er : public Handl er {

publ i c:
virtual void Handl eRequest (Request* t heRequest);
I

s

voi d Ext endedHandl er: : Handl eRequest (Request* theRequest) {
switch (theRequest->CGetKind()) {
case Preview
/1 handl e the Preview request
br eak;

defaul t:
/1 let Handl er handl e other requests
Handl er: : Handl eRequest (t heRequest) ;

}

4. Automatic forwarding in Smalltalk. Y ou can use the doesNot Under st and mechanismin
Smalltalk to forward requests. Messages that have no corresponding methods are trapped in the
implementation of doesNot Under st and, which can be overridden to forward the message to
an object's successor. Thus it isn't necessary to implement forwarding manually; the class handles
only the request in which it'sinterested, and it relieson doesNot Under st and to forward all
others.

v Sample Code

The following example illustrates how a chain of responsibility can handle requests for an on-line help
system like the one described earlier. The help request is an explicit operation. We'll use existing parent
references in the widget hierarchy to propagate requests between widgets in the chain, and we'll define a
reference in the Handler class to propagate help requests between nonwidgets in the chain.

The Hel pHandl er class defines the interface for handling help requests. It maintains a help topic
(which isempty by default) and keeps a reference to its successor on the chain of help handlers. The key
operation isHandl eHel p, which subclasses override. HasHel p is a convenience operation for
checking whether there is an associated help topic.

typedef int Topic;
const Topic NO HELP TOPIC = -1,

cl ass Hel pHandl er {
publi c:
Hel pHandl er (Hel pHandl er* = 0, Topic = NO HELP_TOPI C);
virtual bool HasHel p();
virtual void SetHandl er (Hel pHandl er*, Topic);
virtual void Handl eHel p();
private:
Hel pHandl er* _successor;
Topi ¢ _topic;
s

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5afs.htm (6 of 9) [21/08/2002 19:17:00]

Chain of Responsibility

Hel pHandl er: : Hel pHandl er (
Hel pHandl er* h, Topic t
) : _successor(h), _topic(t) { }

bool Hel pHandl er:: HasHelp () {
return _topic != NO HELP_TOPI C,

}
voi d Hel pHandl er:: Handl eHel p () {
if (_successor !'=0) {
_successor - >Handl eHel p() ;
}
}

All widgets are subclasses of the W dget abstract class. W dget isasubclass of Hel pHandl er, since
all user interface elements can have help associated with them. (We could have used a mixin-based

implementation just as well.)

cl ass Wdget : public Hel pHandl er {
pr ot ect ed:
W dget (W dget* parent, Topic t = NO HELP_TOPI O);
private:
W dget* _parent;
i
Wdget:: Wdget (Wdget* w, Topic t) : HelpHandler(w, t) {
_parent = w;

}

In our example, abutton isthe first handler on the chain. The But t on classisasubclass of W dget .
The But t on constructor takes two parameters. areference to its enclosing widget and the help topic.

class Button : public Wdget {
publi c:
Button(Wdget* d, Topic t = NO HELP TOPRPI O);

virtual void Handl eHel p();
/1 Wdget operations that Button overrides...

s

But t on'sversion of Handl eHel p first teststo seeif thereisahelp topic for buttons. If the developer
hasn't defined one, then the request gets forwarded to the successor using the Handl eHel p operationin
Hel pHandl er . If thereisahelp topic, then the button displaysit, and the search ends.

Button::Button (Wdget* h, Topic t) : Wdget(h, t) { }

void Button::Handl eHelp () {
if (HasHel p()) {
/'l offer help on the button
} else {
Hel pHandl er : : Handl eHel p();
}
}

D al og implements asimilar scheme, except that its successor is not awidget but any help handler. In
our application this successor will be an instance of Appl i cat i on.

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5afs.htm (7 of 9) [21/08/2002 19:17:00]

Chain of Responsibility

class Dialog : public Wdget {

publi c:
Di al og(Hel pHandl er* h, Topic t = NO HELP_TOPI O);
virtual void Handl eHel p();

/1 W dget operations that Dial og overrides...
/11

b

Di al og:: Dial og (Hel pHandl er* h, Topic t) : Wdget(0) {
SetHandl er(h, t);
}

void Dialog::HandleHelp () {
if (HasHel p()) {
/'l offer help on the dial og
} else {
Hel pHandl er: : Handl eHel p() ;
}
}

At the end of the chainisan instance of Appl i cat i on. The application is not awidget, so

Appl i cat i on issubclassed directly from Hel pHandl er . When a help request propagates to this
level, the application can supply information on the application in general, or it can offer alist of
different help topics:

cl ass Application : public Hel pHandl er {
publi c:
Application(Topic t) : Hel pHandler(0, t) { }

virtual void Handl eHel p();
/1l application-specific operations...

s

void Application::Handl eHelp () {
/1l show a list of help topics
}

The following code creates and connects these objects. Here the dialog concerns printing, and so the
objects have printing-related topics assigned.

const Topic PRINT_TOPIC = 1;
const Topi ¢ PAPER ORI ENTATI ON_TOPI C = 2;
const Topi c APPLI CATION_TOPIC = 3;

Application* application = new Application(APPLI CATI ON_TOPI O);
D al og* di al og new Di al og(application, PRI NT_TOPIC);
Butt on* button new Butt on(di al og, PAPER_ORI ENTATI ON_TOPI C) ;

We can invoke the help request by calling Handl eHel p on any object on the chain. To start the search
at the button object, just call Handl eHel p onit:

but t on- >Handl eHel p() ;

In this case, the button will handle the request immediately. Note that any Hel pHandl er class could be
made the successor of Di al og. Moreover, its successor could be changed dynamically. So no matter

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5afs.htm (8 of 9) [21/08/2002 19:17:00]

Chain of Responsibility

where adialog is used, you'll get the proper context-dependent help information for it.

* Known Uses

Several class libraries use the Chain of Responsibility pattern to handle user events. They use different
names for the Handler class, but the idea is the same: When the user clicks the mouse or presses akey, an
event gets generated and passed along the chain. MacApp [App89] and ET++ [WGM88] call it
"EventHandler," Symantec's TCL library [Sym93b] callsit "Bureaucrat,” and NeXT's AppKit [Add94]
uses the name "Responder.”

The Unidraw framework for graphical editors defines Command objects that encapsul ate requests to
Component and ComponentView objects [VL90]. Commands are requests in the sense that a component
or component view may interpret acommand to perform an operation. This corresponds to the "requests
as objects" approach described in Implementation. Components and component views may be structured
hierarchically. A component or a component view may forward command interpretation to its parent,
which may in turn forward it to its parent, and so on, thereby forming a chain of responsibility.

ET++ uses Chain of Responsibility to handle graphical update. A graphical object callsthe
InvalidateRect operation whenever it must update a part of its appearance. A graphical object can't
handle InvalidateRect by itself, because it doesn't know enough about its context. For example, a
graphical object can be enclosed in objects like Scrollers or Zoomers that transform its coordinate
system. That means the object might be scrolled or zoomed so that it's partially out of view. Therefore
the default implementation of InvalidateRect forwards the request to the enclosing container object. The
last object in the forwarding chain is a Window instance. By the time Window receives the request, the
invalidation rectangle is guaranteed to be transformed properly. The Window handles InvalidateRect by
notifying the window system interface and requesting an update.

v Related Patterns

Chain of Responsibility is often applied in conjunction with Composite (163). There, a component's
parent can act as its successor.

F Y
» Command

4 Behavioral Patterns

Abstract Factory « Adapter » Bridge = Builder = Chain of Responsibility = Command « Composite »
Decorator * Facade » Factory Method * Flyweight = Imterpreter » lterator = Mediator = Memento »
Observer = Prototype + Proxy « Singleton = State + Strategy = Template Method = Visitor

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5afs.htm (9 of 9) [21/08/2002 19:17:00]

Command

Case Study | Pattern Catalog | Conclusion

OF" Command Object Bahaviora

SEARCH
| Contents |Guide to Readers | Glossary | Notation | Foundation | Bibliography | Index | Pattern Map |

Intent

Alzo Known As
Mativation
Applicability
Structure

v Intent

Encapsulate arequest as an object, thereby letting you parameterize clients with different requests, queue or
LA | og requests, and support undoable operations.
Collaborations

BB v Also Known AS

Implementation

LA Action, Transaction
Known Uises

LS v Votivation

Sometimes it's necessary to issue requests to objects without knowing anything about the operation being
requested or the receiver of the request. For example, user interface toolkits include objects like buttons and
menus that carry out arequest in response to user input. But the toolkit can't implement the request explicitly
in the button or menu, because only applications that use the toolkit know what should be done on which
object. Astoolkit designers we have no way of knowing the receiver of the request or the operations that will
carry it out.

The Command pattern lets toolkit objects make requests of unspecified application objects by turning the
request itself into an object. This object can be stored and passed around like other objects. The key to this
pattern is an abstract Command class, which declares an interface for executing operations. In the simplest
form thisinterface includes an abstract Execute operation. Concrete Command subclasses specify areceiver-
action pair by storing the receiver as an instance variable and by implementing Execute to invoke the request.
The receiver has the knowledge required to carry out the request.

Application >t Menu <>—-JW [r———m Command

command
AddiMenuitem) Cllcked() © Execulaf)
|
|

Add{Docyument)

Document

Opend)
Closa(}
Cut(}

Copyl}
Pastel)

command-—=Execute]) h/ i

Menus can be implemented easily with Command objects. Each choicein a Menu is an instance of a
Menultem class. An Application class creates these menus and their menu items along with the rest of the user
interface. The Application class also keeps track of Document objects that a user has opened.

The application configures each Menultem with an instance of a concrete Command subclass. When the user
selects a Menultem, the Menultem calls Execute on its command, and Execute carries out the operation.
Menultems don't know which subclass of Command they use. Command subclasses store the receiver of the
regquest and invoke one or more operations on the receiver.

For example, PasteCommand supports pasting text from the clipboard into a Document. PasteCommand's
receiver isthe Document object it is supplied upon instantiation. The Execute operation invokes Paste on the

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5bfs.htm (1 of 9) [21/08/2002 19:18:18]

javascript:loadApplet()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5b.htm#relatedpatterns
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5b.htm#knownuses
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5b.htm#samplecode
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5b.htm#implementation
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5b.htm#consequences
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5b.htm#collaborations
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5b.htm#participants
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5b.htm#structure
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5b.htm#applicability
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5b.htm#motivation
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5b.htm#alsoknownas
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5b.htm#intent
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/helpfs.htm
javascript:build()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/patcafs.htm

Command

receiving Document.

Command

Exgcufe])
Document /k
Open() ---- -
Closel)

docurment

Cut() - PasteCommand
Copyl() =
Paste() Executel) G--——-—-p-————-————- document-=Paste()

OpenCommand's Execute operation is different: it prompts the user for a document name, creates a
corresponding Document object, adds the document to the receiving application, and opens the document.

1
Application :
Add{Document) - application OpenCommand
Execute() ¢
asklUser() |
|
1
namea = AsklUsear() T

dos = new Document{name)
application-=Add{dac
doc—=0Openi)

Sometimes a Menultem needs to execute a sequence of commands. For example, a Menultem for centering a
page at normal size could be constructed from a CenterDocumentCommand object and a

Normal SizeCommand object. Because it's common to string commands together in this way, we can define a
MacroCommand class to allow a Menultem to execute an open-ended number of commands. MacroCommand
is a concrete Command subclass that simply executes a sequence of Commands. MacroCommand has no
explicit receiver, because the commands it sequences define their own receiver.

Executef) |""

! commands
MacroCommand -

Execute(} 7

for all e in commands]
C-=Executel)

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5bfs.htm (2 of 9) [21/08/2002 19:18:18]

Command

In each of these examples, notice how the Command pattern decouples the object that invokes the operation
from the one having the knowledge to perform it. This givesus alot of flexibility in designing our user
interface. An application can provide both a menu and a push button interface to a feature just by making the
menu and the push button share an instance of the same concrete Command subclass. We can replace
commands dynamically, which would be useful for implementing context-sensitive menus. We can also
support command scripting by composing commands into larger ones. All of thisis possible because the object
that issues a request only needs to know how to issueit; it doesn't need to know how the request will be carried
out.

v Applicability
Use the Command pattern when you want to

. parameterize objects by an action to perform, as Menultem objects did above. Y ou can express such
parameterization in a procedural language with a callback function, that is, a function that's registered
somewhere to be caled at alater point. Commands are an object-oriented replacement for callbacks.

. specify, queue, and execute requests at different times. A Command object can have alifetime
independent of the original request. If the receiver of arequest can be represented in an address space-
independent way, then you can transfer a command object for the request to a different process and
fulfill the request there.

. support undo. The Command's Execute operation can store state for reversing its effectsin the
command itself. The Command interface must have an added Unexecute operation that reverses the
effects of a previous call to Execute. Executed commands are stored in a history list. Unlimited-level
undo and redo is achieved by traversing this list backwards and forwards calling Unexecute and
Execute, respectively.

. support logging changes so that they can be reapplied in case of a system crash. By augmenting the
Command interface with load and store operations, you can keep a persistent log of changes.
Recovering from a crash involves reloading logged commands from disk and reexecuting them with the
Execute operation.

. structure a system around high-level operations built on primitives operations. Such a structureis
common in information systems that support transactions. A transaction encapsulates a set of changes
to data. The Command pattern offers away to model transactions. Commands have a common
interface, letting you invoke all transactions the same way. The pattern a'so makes it easy to extend the
system with new transactions.

v Structure

Client Invoker f——————m Command

| Executef}

5 %ﬂ

i L g Roceiver _

| Agtion() e " ConcreteCommand

; Executel) O---—-——--- m=—1 racgivar—=Action();
Bttt ™ siate

v Participants

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5bfs.htm (3 of 9) [21/08/2002 19:18:18]

Command

. Command
o declares an interface for executing an operation.
. ConcreteCommand (PasteCommand, OpenCommand)
o defines abinding between a Receiver object and an action.
o implements Execute by invoking the corresponding operation(s) on Receiver.
. Client (Application)
o creates a ConcreteCommand object and setsits receiver.
. Invoker (Menultem)
o asksthe command to carry out the request.
. Receiver (Document, Application)

o knows how to perform the operations associated with carrying out arequest. Any class may
serve as a Receiver.

v Collaborations

. Theclient creates a ConcreteCommand object and specifies its receiver.
. AnlInvoker object stores the ConcreteCommand object.

. Theinvoker issues arequest by calling Execute on the command. When commands are undoable,
ConcreteCommand stores state for undoing the command prior to invoking Execute.

. The ConcreteCommand object invokes operations on its receiver to carry out the request.

The following diagram shows the interactions between these objects. It illustrates how Command decouples
the invoker from the receiver (and the request it carries out).

aReceiver aClient aCommand aninvoker

nawy Command|aReceiver)

J T Execule() i

Actian)

I .

v Consequences

The Command pattern has the following consegquences:

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5bfs.htm (4 of 9) [21/08/2002 19:18:18]

Command

1. Command decouples the object that invokes the operation from the one that knows how to perform it.
2. Commands are first-class objects. They can be manipulated and extended like any other object.

3. You can assemble commands into a composite command. An example is the MacroCommand class
described earlier. In general, composite commands are an instance of the Composite (163) pattern.

4. It's easy to add new Commands, because you don't have to change existing classes.

v Implementation

Consider the following issues when implementing the Command pattern:

1. How intelligent should a command be? A command can have awide range of abilities. At one extreme
it merely defines a binding between areceiver and the actions that carry out the request. At the other
extreme it implements everything itself without delegating to areceiver at all. The latter extremeis
useful when you want to define commands that are independent of existing classes, when no suitable
receiver exists, or when acommand knows its receiver implicitly. For example, acommand that creates
another application window may be just as capable of creating the window as any other object.
Somewhere in between these extremes are commands that have enough knowledge to find their receiver
dynamically.

2. Supporting undo and redo. Commands can support undo and redo capabilities if they provide away to
reverse their execution (e.g., an Unexecute or Undo operation). A ConcreteCommand class might need
to store additional state to do so. This state can include

o the Receiver object, which actually carries out operations in response to the request,
o the argumentsto the operation performed on the receiver, and

o any original valuesin the receiver that can change as aresult of handling the request. The
receiver must provide operations that |et the command return the receiver to its prior state.

To support one level of undo, an application needs to store only the command that was executed | ast.
For multiple-level undo and redo, the application needs a history list of commands that have been
executed, where the maximum length of the list determines the number of undo/redo levels. The history
list stores sequences of commands that have been executed. Traversing backward through the list and
reverse-executing commands cancels their effect; traversing forward and executing commands
reexecutes them.

An undoable command might have to be copied before it can be placed on the history list. That's
because the command object that carried out the original request, say, from a Menultem, will perform
other requests at later times. Copying is required to distinguish different invocations of the same
command if its state can vary across invocations.

For example, a DeleteCommand that deletes selected objects must store different sets of objects each
timeit's executed. Therefore the DeleteCommand object must be copied following execution, and the
copy is placed on the history list. If the command's state never changes on execution, then copying is
not required—only areference to the command need be placed on the history list. Commands that must
be copied before being placed on the history list act as prototypes (see Prototype (117)).

3. Avoiding error accumulation in the undo process. Hysteresis can be a problem in ensuring areliable,
semantics-preserving undo/redo mechanism. Errors can accumulate as commands are executed,
unexecuted, and reexecuted repeatedly so that an application’s state eventually diverges from original
values. It may be necessary therefore to store more information in the command to ensure that objects
arerestored to their original state. The Memento (283) pattern can be applied to give the command

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5bfs.htm (5 of 9) [21/08/2002 19:18:18]

Command

access to this information without exposing the internal s of other objects.

4. Using C++ templates. For commands that (1) aren't undoable and (2) don't require arguments, we can
use C++ templates to avoid creating a Command subclass for every kind of action and receiver. We
show how to do thisin the Sample Code section.

v Sample Code

The C++ caode shown here sketches the implementation of the Command classes in the Motivation section.
Well define OpenCommand, Past eCommrand, and Macr oComrand. First the abstract Command class:

cl ass Command {
publi c:
virtual ~Comrand();

virtual void Execute() = O;
prot ect ed:
Command() ;

}s

OpenComand opens a document whose name is supplied by the user. An OQpenComrand must be passed an
Appl i cat i on object inits constructor. AskUser isan implementation routine that prompts the user for the
name of the document to open.

class OpenComand : public Command {
publi c:
OpenComand(Appl i cati on*);

virtual void Execute();
pr ot ect ed:
virtual const char* AskUser();
private:
Application* _application;
char* _response;

s

OpenComand: : QpenComand (Application* a) {
_application = a;

}

voi d OpenComrand: : Execute () {
const char* nanme = AskUser();

if (name !'= 0) {
Docunent * document = new Docunent (nane) ;
_application->Add(docunent);
docunent - >Open() ;

}

A Past eConmrand must be passed aDocunent object asitsreceiver. The receiver is given as a parameter
to Past eComand's constructor.

cl ass Past eCommand : public Command {
publi c:
Past eCommand(Docunent *) ;

virtual void Execute();

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5bfs.htm (6 of 9) [21/08/2002 19:18:18]

Command

private:
Docunent* _document;

s

Past eComuand: : Past eConmmand (Docunent* doc) {
_docunent = doc;

}

voi d Past eCommand: : Execute () {
_docunent - >Past e() ;

}

For simple commands that aren't undoable and don't require arguments, we can use a class template to
parameterize the command's receiver. We'll define atemplate subclass Si npl eConmraind for such
commands. Si npl eCommand is parameterized by the Recei ver type and maintains a binding between a
receiver object and an action stored as a pointer to a member function.

tenpl ate <cl ass Recei ver >
cl ass Sinpl eCommand : public Command {
publi c:

typedef void (Receiver::* Action)();

Si npl eCommrand(Recei ver* r, Action a)
_receiver(r), _action(a) { }

virtual void Execute();
private:

Action _action;

Recei ver* _receiver;

}s

The constructor stores the receiver and the action in the corresponding instance variables. Execut e simply
applies the action to the receiver.

tenpl ate <cl ass Recei ver>

voi d Si nmpl eCommand<Recei ver >:: Execute () {
(_receiver->*_action)();

}

To create acommand that calls Act i on on aninstance of classMyCl ass, aclient simply writes

MyCl ass* receiver new MyCl ass;
/1
Command* aCommand =
new Si mpl eComand<MyC ass>(recei ver, &WUCd ass:: Action);
/1

aConmand- >Execut e() ;

Keep in mind that this solution only works for simple commands. More complex commands that keep track of
not only their receivers but also arguments and/or undo state require a Command subclass.

A Macr oComand manages a sequence of subcommands and provides operations for adding and removing
subcommands. No explicit receiver is required, because the subcommands already define their receiver.

cl ass MacroCommand : public Command {
publi c:

Macr oCommand() ;

virtual ~MacroConmand();

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5bfs.htm (7 of 9) [21/08/2002 19:18:18]

Command

virtual void Add(Command*);
virtual void Renove(Command*);

virtual void Execute();
private:
Li st <Command*>* _cnds;

s

The key to the Macr oConmand isits Execut e member function. Thistraverses all the subcommands and
performs Execut e on each of them.

voi d MacroCommand: : Execute () {
Li stlterator<Comuand*> i (_cnds);

for (i.First(); !'i.lsbDone(); i.Next()) {
Command* ¢ = i.Currentltem);
c- >Execute();

}

Note that should the Macr oConmrand implement an Unexecut e operation, then its subcommands must be
unexecuted in reverse order relative to Execut e'simplementation.

Finally, Macr oCommand must provide operations to manage its subcommands. The Macr oComrand isaso
responsible for deleting its subcommands.

voi d Macr oConmand: : Add (Conmand* c¢) {
_cnds- >Append(c) ;
}

voi d Macr oConmand: : Renmove (Command* c) {
_cnds- >Renpve(c) ;

}

* Known Uses

Perhaps the first example of the Command pattern appearsin a paper by Lieberman [Lie85]. MacApp [App89]
popularized the notion of commands for implementing undoable operations. ET++ [WGM88], InterViews
[LCI+92], and Unidraw [V L90] also define classes that follow the Command pattern. InterViews defines an

Action abstract class that provides command functionality. It aso defines an ActionCallback template,
parameterized by action method, that can instantiate command subclasses automatically.

The THINK class library [Sym93b] also uses commands to support undoable actions. Commandsin THINK
are called "Tasks." Task objects are passed along a Chain of Responsibility (223) for consumption.

Unidraw's command objects are unique in that they can behave like messages. A Unidraw command may be
sent to another object for interpretation, and the result of the interpration varies with the receiving object.
Moreover, the receiver may delegate the interpretation to another object, typically the receiver's parent in a
larger structure asin a Chain of Responsibility. The receiver of a Unidraw command is thus computed rather
than stored. Unidraw's interpretation mechanism depends on run-time type information.

Coplien describes how to implement functor s, objects that are functions, in C++ [Cop92]. He achieves a
degree of transparency in their use by overloading the function call operator (oper at or ()). The Command
pattern is different; its focus is on maintaining a binding between areceiver and afunction (i.e., action), not
just maintaining afunction.

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5bfs.htm (8 of 9) [21/08/2002 19:18:18]

Command

v Related Patterns

A Composite (163) can be used to implement MacroCommands.

A Memento (283) can keep state the command requires to undo its effect.

A command that must be copied before being placed on the history list acts as a Prototype (117).

a

p |nNterpreter
4 Chain of Responsibility

Abstract Factory « Adapter « Bridge * Builder « Chain of Hesponsibility = Command « Composite «
D ator » Facade * Factory Method * Flyweight * Interpreter = lterator = Mediator + Memento *
Observer * Prototype + Proxy + Singleton * State « Strategy + Template Method + Visitor

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5bfs.htm (9 of 9) [21/08/2002 19:18:18]

Interpreter

Case Study | Pattern Catalog | Conclusion

O Interpreter P

SEARCH

| Contents |ﬁ.|i|:|ntu Hﬂﬂdﬂ'5| Glossary | Notation | Foundation | Bibliography | Index | Pattern Map |
Intent
Motivation
Applicability
Structure

pd, L Given alanguage, define arepresention for its grammar along with an interpreter that uses the
LR E U representation to interpret sentences in the language.
Consequences

LLLLU ¥ Motivation
Sample Code

Known Uses If aparticular kind of problem occurs often enough, then it might be worthwhile to express instances of
Related Patterns the problem as sentences in a simple language. Then you can build an interpreter that solves the problem
by interpreting these sentences.

v Intent

For example, searching for strings that match a pattern is a common problem. Regular expressions are a
standard language for specifying patterns of strings. Rather than building custom agorithms to match
each pattern against strings, search algorithms could interpret a regular expression that specifies a set of
strings to match.

The Interpreter pattern describes how to define agrammar for simple languages, represent sentencesin
the language, and interpret these sentences. In this example, the pattern describes how to define a
grammar for regular expressions, represent a particular regular expression, and how to interpret that
regular expression.

Suppose the following grammar defines the regular expressions:

expression ::=literal | alternation | sequence | repetition |
"('" expression ')’

alternation ::= expression '|' expression

sequence ::= expression '& expression

repetition ::= expression '*'

literal ::="a | 'b" | "¢ | ... {'a | '"b | "¢ | ... }*

The symbol expr essi on isthe start symbol, and | i t er al isaterminal symbol defining smple
words.

The Interpreter pattern uses a class to represent each grammar rule. Symbols on the right-hand side of the
rule are instance variables of these classes. The grammar above is represented by five classes: an abstract
class RegularExpression and its four subclasses Literal Expression, AlternationExpression,
SequenceExpression, and RepetitionExpression. The last three classes define variables that hold
subexpressions.

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5cfs.htm (1 of 12) [21/08/2002 19:18:36]

javascript:loadApplet()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5c.htm#relatedpatterns
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5c.htm#knownuses
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5c.htm#samplecode
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5c.htm#implementation
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5c.htm#consequences
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5c.htm#collaborations
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5c.htm#participants
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5c.htm#structure
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5c.htm#applicability
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5c.htm#motivation
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5c.htm#intent
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/helpfs.htm
javascript:build()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/patcafs.htm

Interpreter

.
RegularExpression I
s o
Interpreal() e
LiteralExpression SequenceExpression [>ZXRression! |
~ expressiong
Interpret) Intarprat]()
literal
[epeuion -, RepetitionExpression AlternationExpression e Alternatve
|~ 2lternative?
Interpret) Interpret()

Every regular expression defined by this grammar is represented by an abstract syntax tree made up of
instances of these classes. For example, the abstract syntax tree

Ly
(asuquuﬂmExpmssmn

Lexpreﬁslom]

guprassion?
P * Y

r’ aliteralExpression W r'aﬁupatitinnEtprassiun \I

L\:aining' _/J Lrepeai I

_\-\.H
(annlternaﬁmapmmiun
alternationy =
alternation2 *
A

If al.iteralExpression \1 (atlteralExp#essbon \1

s 7 Lo g

represents the regular expression
raining & (dogs | cats) *

We can create an interpreter for these regular expressions by defining the Interpret operation on each
subclass of RegularExpression. Interpret takes as an argument the context in which to interpret the
expression. The context contains the input string and information on how much of it has been matched so
far. Each subclass of RegularExpression implements Interpret to match the next part of the input string
based on the current context. For example,

. LiteraExpression will check if the input matches the literal it defines,

. AlternationExpression will check if the input matches any of its alternatives,

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5cfs.htm (2 of 12) [21/08/2002 19:18:36]

Interpreter

. RepetitionExpression will check if the input has multiple copies of expression it repests,

and so on.
v Applicability

Use the Interpreter pattern when there is alanguage to interpret, and you can represent statements in the
language as abstract syntax trees. The Interpreter pattern works best when

. thegrammar issimple. For complex grammars, the class hierarchy for the grammar becomes
large and unmanageable. Tools such as parser generators are a better alternative in such cases.

They can interpret expressions without building abstract syntax trees, which can save space and
possibly time.

. efficiency isnot acritical concern. The most efficient interpreters are usually not implemented by
interpreting parse trees directly but by first tranglating them into another form. For example,
regular expressions are often transformed into state machines. But even then, the translator can be
implemented by the Interpreter pattern, so the pattern is still applicable.

v Structure

—md Context

Client L i AbstractExpression (e

Imterprel{Contaxt)
| |
TerminalExpression NonterminalExpression Fo—
Interprat| Context) Interprat{Contasxt)

v Participants
. AbstractExpression (RegularExpression)

o declares an abstract Interpret operation that is common to all nodes in the abstract syntax
tree.

. TerminalExpression (Literal Expression)
o implements an Interpret operation associated with terminal symbols in the grammar.
o aninstanceisrequired for every terminal symbol in a sentence.

. NonterminalExpression (AlternationExpression, RepetitionExpression, SequenceExpressions)

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5cfs.htm (3 of 12) [21/08/2002 19:18:36]

Interpreter

o onesuch classisrequired for every ruleR ::= Ry R, ... R, in the grammar.

o maintains instance variables of type AbstractExpression for each of the symbols Ry
through R,

o implements an Interpret operation for nonterminal symbols in the grammar. Interpret
typicaly callsitself recursively on the variables representing R, through R,..

. Context
o containsinformation that's global to the interpreter.
. Client

o builds (or is given) an abstract syntax tree representing a particular sentencein the
language that the grammar defines. The abstract syntax tree is assembled from instances of
the Nonterminal Expression and Terminal Expression classes.

o invokesthe Interpret operation.

v Collaborations

. Theclient builds (or is given) the sentence as an abstract syntax tree of Nonterminal Expression
and Terminal Expression instances. Then the client initializes the context and invokes the Interpret
operation.

. Each Nonterminal Expression node defines Interpret in terms of Interpret on each subexpression.
The Interpret operation of each Terminal Expression defines the base case in the recursion.

. TheInterpret operations at each node use the context to store and access the state of the
interpreter.

v Consequences

The Interpreter pattern has the following benefits and liabilities:

1. It'seasy to change and extend the grammar. Because the pattern uses classes to represent
grammar rules, you can use inheritance to change or extend the grammar. Existing expressions
can be modified incrementally, and new expressions can be defined as variations on old ones.

2. Implementing the grammar is easy, too. Classes defining nodes in the abstract syntax tree have
similar implementations. These classes are easy to write, and often their generation can be
automated with a compiler or parser generator.

3. Complex grammars are hard to maintain. The Interpreter pattern defines at least one class for
every rulein the grammar (grammar rules defined using BNF may require multiple classes).
Hence grammars containing many rules can be hard to manage and maintain. Other design
patterns can be applied to mitigate the problem (see Implementation). But when the grammar is

very complex, other techniques such as parser or compiler generators are more appropriate.

4. Adding new ways to interpret expressions. The Interpreter pattern makes it easier to evaluate an
expression in anew way. For example, you can support pretty printing or type-checking an

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5cfs.htm (4 of 12) [21/08/2002 19:18:36]

Interpreter

expression by defining a new operation on the expression classes. If you keep creating new ways
of interpreting an expression, then consider using the Visitor (331) pattern to avoid changing the
grammar classes.

v Implementation

The Interpreter and Composite (163) patterns share many implementation issues. The following issues
are specific to Interpreter:

1. Creating the abstract syntax tree. The Interpreter pattern doesn't explain how to create an abstract
syntax tree. In other words, it doesn't address parsing. The abstract syntax tree can be created by a
table-driven parser, by a hand-crafted (usually recursive descent) parser, or directly by the client.

2. Defining the Interpret operation. Y ou don't have to define the Interpret operation in the
expression classes. If it's common to create a new interpreter, then it's better to use the Visitor
(331) pattern to put Interpret in a separate "visitor" object. For example, agrammar for a
programming language will have many operations on abstract syntax trees, such as astype-
checking, optimization, code generation, and so on. It will be more likely to use a visitor to avoid
defining these operations on every grammar class.

3. Sharing terminal symbols with the Flyweight pattern. Grammars whose sentences contain many
occurrences of aterminal symbol might benefit from sharing a single copy of that symbol.
Grammars for computer programs are good examples—each program variable will appear in
many places throughout the code. In the Motivation example, a sentence can have the terminal
symbol dog (modeled by the Literal Expression class) appearing many times.

Terminal nodes generally don't store information about their position in the abstract syntax tree.
Parent nodes pass them whatever context they need during interpretation. Hence thereisa
distinction between shared (intrinsic) state and passed-in (extrinsic) state, and the Flyweight (195)
pattern applies.

For example, each instance of Literal Expression for dog receives a context containing the
substring matched so far. And every such Literal Expression does the same thing in its Interpret
operation—it checks whether the next part of the input contains adog—no matter where the
instance appearsin the tree.

v Sample Code

Here are two examples. Thefirst is a complete example in Smalltalk for checking whether a sequence
matches aregular expression. The second is a C++ program for evaluating Boolean expressions.

The regular expression matcher tests whether a string is in the language defined by the regular
expression. The regular expression is defined by the following grammar:

expression ::=literal | alternation | sequence | repetition |
"('" expression ')’

alternation ::= expression '|' expression

sequence ::= expression '& expression

repetition ::= expression 'repeat’

literal ::="a" | '"b" | "¢ | ... {"a" | '"b" | "¢ | ... }*

This grammar is a slight modification of the Motivation example. We changed the concrete syntax of
regular expressions alittle, because symbol "* " can't be a postfix operation in Smalltalk. So we use

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5cfs.htm (5 of 12) [21/08/2002 19:18:36]

Interpreter

r epeat instead. For example, the regular expression
(("dog ' | 'cat ') repeat & 'weather')
matches the input string "dog dog cat weat her".

To implement the matcher, we define the five classes described on page 243. The class
SequenceExpr essi on hasinstance variablesexpr essi onl and expr essi on2 for its children
in the abstract syntax tree. Al t er nat i onExpr essi on storesits alternativesin the instance variables
alternativelandal ternative2,whileRepetiti onExpressi on holdsthe expression it
repeatsinitsr epeti ti on instance variable. Litera Expression hasaconponent s instance variable
that holds alist of objects (probably characters). These represent the literal string that must match the
input sequence.

Themat ch: operation implements an interpreter for the regular expression. Each of the classes defining
the abstract syntax tree implements this operation. It takesi nput St at e as an argument representing
the current state of the matching process, having read part of the input string.

This current state is characterized by a set of input streams representing the set of inputs that the regular
expression could have accepted so far. (Thisis roughly equivalent to recording all states that the
equivalent finite state automata would be in, having recognized the input stream to this point).

The current state is most important to ther epeat operation. For example, if the regular expression were
'a' repeat

then the interpreter could match "a", "aa", "aaa", and so on. If it were

a' repeat & 'bc’

then it could match "abc™, "aabc", "aaabc", and so on. But if the regular expression were
"a' repeat & 'abc’

then matching the input "aabc" against the subexpression™ a' repeat " would yield two input
streams, one having matched one character of the input, and the other having matched two characters.
Only the stream that has accepted one character will match the remaining "abc™.

Now we consider the definitions of mat ch: for each class defining the regular expression. The
definition for SequenceExpr essi on matches each of its subexpressionsin sequence. Usualy it will
eliminate input streams from itsi nput St at e.

mat ch: inputState
AN expression2 match: (expressionl match: inputState).

AnAl t er nat i onExpr essi on will return a state that consists of the union of states from either
aternative. The definition of mat ch: for Al t er nati onExpr essi onis

mat ch: inputState
| final State |
final State := alternativel match: inputState.
final State addAll: (alternative2 match: inputState).
A final State

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5cfs.htm (6 of 12) [21/08/2002 19:18:36]

Interpreter

Themat ch: operation for Repet i ti onExpr essi on triesto find as many states that could match as
possible:

mat ch: input State
| aState final State |
aState := inputState.
final State := i nput State copy.
[aState i sEnpty]
whi | eFal se:
[aState := repetition match: aState.
final State addAl | : aState].
A final State

Its output state usually contains more states than its input state, because aRepet i ti onExpr essi on
can match one, two, or many occurrences of r epet i t i on on the input state. The output states
represent all these possibilities, allowing subsequent elements of the regular expression to decide which
state is the correct one.

Finally, the definition of mat ch: for Li t er al Expr essi on triesto match its components against
each possible input stream. It keeps only those input streams that have a match:

mat ch: inputState
| final State tStream |
final State := Set new.
i nput St ate
do:
[:stream | tStream := stream copy.
(t Stream next Avai | abl e:
conmponents size
) = conponents
ifTrue: [final State add: tStrean
].

N final State

Thenext Avai | abl e: message advances the input stream. Thisisthe only mat ch: operation that
advances the stream. Notice how the state that's returned contains a copy of the input stream, thereby
ensuring that matching aliteral never changes the input stream. Thisis important because each
aternative of an Al t er nat i onExpr essi on should see identical copies of the input stream.

Now that we've defined the classes that make up an abstract syntax tree, we can describe how to build it.
Rather than write a parser for regular expressions, we'll define some operations on the

Regul ar Expr essi on classes so that evaluating a Smalltalk expression will produce an abstract
syntax tree for the corresponding regular expression. That lets us use the built-in Smalltalk compiler asif
it were aparser for regular expressions.

To build the abstract syntax tree, we'll need to define™| *, "r epeat ", and "&" as operations on
Regul ar Expr essi on. These operations are defined in class Regul ar Expr essi on likethis:

& aNode
N SequenceExpressi on new
expressionl: self expression2: aNode asRExp

r epeat
N RepetitionExpression new repetition: self

| aNode

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5cfs.htm (7 of 12) [21/08/2002 19:18:36]

Interpreter

A Al ternationExpressi on new
alternativel: self alternative2: aNode asRExp

asRExp
N sel f

The asRExp operation will convert literalsinto Regul ar Expr essi ons. These operations are
definedinclassStri ng:

& aNode
N SequenceExpressi on new
expressionl: self asRExp expression2: aNode asRExp

r epeat
N RepetitionExpression new repetition: self

| aNode
A Al ternationExpressi on new
alternativel: self asRExp alternative2: aNode asRExp

asRExp
A Literal Expressi on new conponents: self

If we defined these operations higher up in the class hierarchy (Sequenceabl eCol | ecti onin
Smalltalk-80, | ndexedCol | ect i on in Smalltalk/V), then they would aso be defined for classes such
asArray and Or der edCol | ect i on. Thiswould let regular expressions match sequences of any
kind of object.

The second example is a system for manipulating and evaluating Boolean expressions implemented in
C++. Theterminal symbolsin this language are Boolean variables, that is, the constantst r ue and

f al se. Nonterminal symbols represent expressions containing the operators and, or , and not . The
grammar is defined as followst:

Bool eanExp ::= VariableExp | Constant | OrExp | AndExp | Not Exp |
"(" BooleankExp ')’

AndExp ::= Bool eanExp 'and' Bool eanExp

O Exp ::= Bool eanExp 'or' Bool eanExp

Not Exp ::= 'not' Bool eanExp

Constant ::= "true' | 'false'

VariableExp ::="A | 'B | ... | "X | 'Y | 'Z

We define two operations on Boolean expressions. Thefirst, Eval uat e, evaluates a Boolean
expression in acontext that assigns atrue or false value to each variable. The second operation,

Repl ace, produces a new Boolean expression by replacing avariable with an expression. Repl ace
shows how the Interpreter pattern can be used for more than just evaluating expressions. In this case, it
mani pul ates the expression itself.

We give details of just the Bool eanExp, Var i abl eExp, and AndExp classes here. Classes Or Exp
and Not Exp are similar to AndExp. The Const ant class represents the Boolean constants.

Bool eanExp defines the interface for all classes that define a Boolean expression:

cl ass Bool eanExp {
publi c:
Bool eanExp() ;
virtual ~Bool eanExp();

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5cfs.htm (8 of 12) [21/08/2002 19:18:36]

Interpreter

virtual bool Eval uate(Context&) = O0;
virtual Bool eanExp* Repl ace(const char*, Bool eanExp&) = O;
virtual Bool eanExp* Copy() const = O;

s

The class Cont ext defines a mapping from variables to Boolean values, which we represent with the
C++ constantst r ue and f al se. Cont ext hasthe following interface:

cl ass Context {

publi c:
bool Lookup(const char*) const;
voi d Assi gn(Vari abl eExp*, bool);

i
A Var i abl eExp represents a named variable:

class Variabl eExp : public Bool eanExp {
publi c:

Vari abl eExp(const char*);

virtual ~Vari abl eExp();

virtual bool Eval uate(Context&);
vi rtual Bool eanExp* Repl ace(const char*, Bool eanExp&);
virtual Bool eanExp* Copy() const;
private:
char* _nane;

s
The constructor takes the variable's name as an argument:

Vari abl eExp: : Vari abl eExp (const char* nane) {
_name = strdup(nane);

}

Evaluating a variable returnsits value in the current context.

bool Vari abl eExp: : Eval uate (Context& aContext) {
return aCont ext. Lookup(_nane);

}

Copying avariable returnsanew Var i abl eExp:

Bool eanExp* Vari abl eExp:: Copy () const {
return new Vari abl eExp(_nane) ;

}

To replace a variable with an expression, we check to see if the variable has the same name as the one it
is passed as an argument:

Bool eanExp* Vari abl eExp: : Repl ace (
const char* name, Bool eanExp& exp
) A
if (strcnmp(nanme, _nane) == 0) {
return exp. Copy();

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5cfs.htm (9 of 12) [21/08/2002 19:18:36]

Interpreter

} else {
return new Vari abl eExp(_nane) ;

}

An AndExp represents an expression made by ANDing two Boolean expressions together.

cl ass AndExp : public Bool eanExp {
publi c:
AndExp(Bool eanExp*, Bool eanExp*);
virtual ~ AndExp();

virtual bool Eval uate(Context&);
virtual Bool eanExp* Repl ace(const char*, Bool eanExp&);
virtual Bool eanExp* Copy() const;
private:
Bool eanExp* _operandl,;
Bool eanExp* _operand2;

1

AndExp: : AndExp (Bool eanExp* opl, Bool eanExp* op2) {
_operandl = opl;
_operand2 = op2;

}

Evaluating an AndExp evaluates its operands and returns the logical "and" of the results.

bool AndExp:: Eval uate (Context& aContext) {
return
_oper andl- >Eval uat e(aCont ext) &&
_oper and2- >Eval uat e(aCont ext) ;

}

An AndExp implements Copy and Repl ace by making recursive calls on its operands:

Bool eanExp* AndExp:: Copy () const {
return
new AndExp(_oper andl->Copy(), _operand2->Copy());

}
Bool eanExp* AndExp:: Repl ace (const char* nane, Bool eanExp& exp) {
return
new AndExp(
_oper andl- >Repl ace(nane, exp),
_oper and2- >Repl ace(nanme, exp)
)
}

Now we can define the Boolean expression
(true and x) or (y and (not x))
and evaluate it for agiven assignment of t r ue or f al se tothevariablesx andy:

Bool eanExp* expressi on;
Cont ext cont ext;

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5cfs.htm (10 of 12) [21/08/2002 19:18:36]

Interpreter

Vari abl eExp* x
Vari abl eExp* vy

= new Vari abl eExp(" X");
= new Vari abl eExp("Y");
expression = new O Exp(
new AndExp(new Constant (true), Xx),
new AndExp(y, new Not Exp(x))

)

cont ext. Assi gn(x, false);
context. Assign(y, true);

bool result = expression->Eval uate(context);

The expression evaluatestot r ue for this assignment to x and y. We can evaluate the expression with a
different assignment to the variables simply by changing the context.

Finally, we can replace the variable y with anew expression and then reevaluate it:

Vari abl eExp* z = new Vari abl eExp("Z");
Not Exp not _z(z);

Bool eanExp* repl acenent = expression->Replace("Y", not_z);
context. Assign(z, true);

result = repl acenent - >Eval uat e(cont ext);

This example illustrates an important point about the Interpreter pattern: many kinds of operations can
"interpret” a sentence. Of the three operations defined for Bool eanExp, Eval uat e fits our idea of
what an interpreter should do most closely—that is, it interprets a program or expression and returns a
simple result.

However, Repl ace can be viewed as an interpreter aswell. It's an interpreter whose context is the name
of the variable being replaced along with the expression that replaces it, and whose result is a new
expression. Even Copy can be thought of as an interpreter with an empty context. It may seem alittle
strange to consider Repl ace and Copy to be interpreters, because these are just basic operations on
trees. The examplesin Visitor (331) illustrate how all three operations can be refactored into a separate
"interpreter” visitor, thus showing that the similarity is deep.

The Interpreter pattern is more than just an operation distributed over a class hierarchy that uses the
Composite (163) pattern. We consider Eval uat e aninterpreter because we think of the Bool eanExp
class hierarchy as representing alanguage. Given a similar class hierarchy for representing automotive
part assemblies, it's unlikely we'd consider operations like Wei ght and Copy asinterpreters even
though they are distributed over a class hierarchy that uses the Composite pattern—we just don't think of
automotive parts as alanguage. It's a matter of perspective; if we started publishing grammars of
automotive parts, then we could consider operations on those parts to be ways of interpreting the
language.

* Khown Uses

The Interpreter pattern is widely used in compilersimplemented with object-oriented languages, as the
Smalltalk compilers are. SPECTalk uses the pattern to interpret descriptions of input file formats
[Sza92]. The QOCA constraint-solving toolkit uses it to evaluate constraints [HHMV 92].

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5cfs.htm (11 of 12) [21/08/2002 19:18:36]

Interpreter

Considered in its most general form (i.e., an operation distributed over a class hierarchy based on the
Composite pattern), nearly every use of the Composite pattern will also contain the Interpreter pattern.
But the Interpreter pattern should be reserved for those cases in which you want to think of the class
hierarchy as defining alanguage.

v Related Patterns

Composite (163): The abstract syntax tree is an instance of the Composite pattern.

Flyweight (195) shows how to share terminal symbols within the abstract syntax tree.

Iterator (257): Theinterpreter can use an lterator to traverse the structure.

Visitor (331) can be used to maintain the behavior in each node in the abstract syntax tree in one class.
Y

p lterator
4 Command

IFor simplicity, we ignore operator precedence and assume it's the responsibility of whichever object
constructs the syntax tree.

y
Abstract Factory » Adapter » Bridge » Builder = Chain of Responsibility = Command « Composite »
Decorator *» Facade * Factory Method * Flyweight Interpreter ¢ terator = Mediator *+ Memento »

Observer * Prototype + Proxy + Singleton + State « Strategy + Template Method » Visitor

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5cfs.htm (12 of 12) [21/08/2002 19:18:36]

Iterator

Case Study | Pattern Catalog | Conclusion

O Iterator Object Behavioral

SEARCH

| Contents |ﬁ.|i|:|ntu Hﬂﬂdﬂ'5| Glossary | Notation | Foundation | Bibliography | Index | Pattern Map |
Intent

Also Known As
Motivation
Applicability
Structure

v Intent

Provide away to access the elements of an aggregate object sequentially without exposing its underlying
L LB representation.
Collaborations

L v Also Known AS

Implementation

Sample Code Cursor
Known Uses

LU v \Votivation

An aggregate object such as alist should give you away to access its el ements without exposing its
internal structure. Moreover, you might want to traverse the list in different ways, depending on what
you want to accomplish. But you probably don't want to bloat the List interface with operations for
different traversals, even if you could anticipate the ones you will need. Y ou might also need to have
more than one traversal pending on the same list.

The Iterator pattern lets you do all this. The key ideain this pattern is to take the responsibility for access
and traversal out of the list object and put it into an iterator object. The Iterator class defines an interface
for accessing the list's elements. An iterator object is responsible for keeping track of the current element;
that is, it knows which elements have been traversed already.

For example, aList classwould call for a Listlterator with the following relationship between them:

fist

List - Listiterator
Count() First{}
Append|Element) Mext{)
RemoveElement) IsDonel)
. Currentitem()
index

Before you can instantiate Listlterator, you must supply the List to traverse. Once you have the
Listlterator instance, you can access the list's el ements sequentially. The Currentltem operation returns
the current element in the list, First initializes the current element to the first element, Next advances the
current element to the next element, and IsDone tests whether we've advanced beyond the last
element—that is, we're finished with the traversal.

Separating the traversal mechanism from the List object lets us define iterators for different traversal
policies without enumerating them in the List interface. For example, FilteringListlterator might provide
access only to those elements that satisfy specific filtering constraints.

Notice that the iterator and the list are coupled, and the client must know that it isalist that's traversed as
opposed to some other aggregate structure. Hence the client commits to a particular aggregate structure.

It would be better if we could change the aggregate class without changing client code. We can do this by
generalizing the iterator concept to support polymor phic iteration.

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5dfs.htm (1 of 13) [21/08/2002 19:18:55]

javascript:loadApplet()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5d.htm#relatedpatterns
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5d.htm#knownuses
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5d.htm#samplecode
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5d.htm#implementation
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5d.htm#consequences
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5d.htm#collaborations
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5d.htm#participants
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5d.htm#structure
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5d.htm#applicability
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5d.htm#motivation
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5d.htm#alsoknownas
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5d.htm#intent
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/helpfs.htm
javascript:build()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/patcafs.htm

Iterator

Asan example, let's assume that we also have a SkipList implementation of alist. A skiplist [Pug90] isa

probabilistic data structure with characteristics similar to balanced trees. We want to be able to write
code that works for both List and SkipList objects.

We define an AbstractList class that provides a common interface for manipulating lists. Similarly, we
need an abstract Iterator class that defines a common iteration interface. Then we can define concrete
Iterator subclasses for the different list implementations. As aresult, the iteration mechanism becomes
independent of concrete aggregate classes.

Abstractlist M——— Client [———————M™ [terafor
Createlteratorn) Firstl}

Countf) Mexti)

Appondiitam) isDame()
Hemove(ltem) Curranitftemy)

T T e .
List - Listiterator
___ _-
SkipList - SkipListiterator

The remaining problem is how to create the iterator. Since we want to write code that's independent of
the concrete List subclasses, we cannot simply instantiate a specific class. Instead, we make the list
objects responsible for creating their corresponding iterator. This requires an operation like Createl terator
through which clients request an iterator object.

Createlterator is an example of afactory method (see Factory Method (107)). We useit hereto let a

client ask alist object for the appropriate iterator. The Factory Method approach give rise to two class
hierarchies, one for lists and another for iterators. The Createlterator factory method "connects' the two
hierarchies.

v Applicability

Use the Iterator pattern
. to access an aggregate object's contents without exposing its internal representation.
. to support multiple traversals of aggregate objects.

. to provide auniform interface for traversing different aggregate structures (that is, to support
polymorphic iteration).

v Structure

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5dfs.htm (2 of 13) [21/08/2002 19:18:55]

Iterator

Aggregate ; iterator
Createlterator) First(}
Nexti)
IsDane()
fi‘-. E‘mre:‘;e)

ConcreteAggregate | -

Createlteraton) ¢
i

FRILIFR naw Gnncra!altar&lm{thiS}H

Concretelterator

¥ Participants

Iterator

o defines an interface for accessing and traversing elements.
. Concretelterator

o implements the Iterator interface.

o keepstrack of the current position in the traversal of the aggregate.
. Aggregate

o defines an interface for creating an Iterator object.
. ConcreteAggregate

o implements the Iterator creation interface to return an instance of the proper
Concretelterator.

v Collaborations

. A Concretelterator keeps track of the current object in the aggregate and can compute the
succeeding object in the traversal.

¥ Consequences

The Iterator pattern has three important consequences:

1. It supportsvariationsin the traversal of an aggregate. Complex aggregates may be traversed in
many ways. For example, code generation and semantic checking involve traversing parse trees.
Code generation may traverse the parse tree inorder or preorder. Iterators make it easy to change
the traversal agorithm: Just replace the iterator instance with a different one. Y ou can also define
Iterator subclasses to support new traversals.

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5dfs.htm (3 of 13) [21/08/2002 19:18:55]

Iterator

2. Iterators simplify the Aggregate interface. Iterator's traversal interface obviates the need for a
similar interface in Aggregate, thereby simplifying the aggregate's interface.

3. More than onetraversal can be pending on an aggregate. An iterator keeps track of its own
traversal state. Therefore you can have more than one traversal in progress at once.

v Implementation

Iterator has many implementation variants and aternatives. Some important ones follow. The trade-offs
often depend on the control structures your language provides. Some languages (CLU [LG86], for
example) even support this pattern directly.

1. Who controlstheiteration? A fundamental issue is deciding which party controls the iteration, the
iterator or the client that uses the iterator. When the client controls the iteration, the iterator is
called an external iterator, and when the iterator controlsit, the iterator is an internal iterator .2
Clients that use an external iterator must advance the traversal and request the next element
explicitly from the iterator. In contrast, the client hands an internal iterator an operation to
perform, and the iterator applies that operation to every element in the aggregate.

External iterators are more flexible than internal iterators. It's easy to compare two collections for
equality with an external iterator, for example, but it's practically impossible with internal
iterators. Internal iterators are especially weak in alanguage like C++ that does not provide
anonymous functions, closures, or continuations like Smalltalk and CLOS. But on the other hand,
internal iterators are easier to use, because they define the iteration logic for you.

2. Who defines the traversal algorithm? The iterator is not the only place where the traversal
algorithm can be defined. The aggregate might define the traversal algorithm and use the iterator
to store just the state of the iteration. We call this kind of iterator a cursor, since it merely points
to the current position in the aggregate. A client will invoke the Next operation on the aggregate
with the cursor as an argument, and the Next operation will change the state of the cursor.3

If theiterator isresponsible for the traversal algorithm, then it's easy to use different iteration
algorithms on the same aggregate, and it can also be easier to reuse the same algorithm on
different aggregates. On the other hand, the traversal algorithm might need to access the private
variables of the aggregate. If so, putting the traversal algorithm in the iterator violates the
encapsulation of the aggregate.

3. How robust isthe iterator? It can be dangerous to modify an aggregate while you're traversing it.
If elements are added or deleted from the aggregate, you might end up accessing an element twice
or missing it completely. A ssmple solution is to copy the aggregate and traverse the copy, but
that's too expensive to do in general.

A robust iterator ensures that insertions and removals won't interfere with traversal, and it does
it without copying the aggregate. There are many ways to implement robust iterators. Most rely
on registering the iterator with the aggregate. On insertion or removal, the aggregate either adjusts
the internal state of iteratorsit has produced, or it maintains information internally to ensure
proper traversal.

Kofler provides a good discussion of how robust iterators are implemented in ET++ [K0of93].
Murray discusses the implementation of robust iterators for the USL StandardComponents' List

class[Mur93].

4. Additional Iterator operations. The minimal interface to Iterator consists of the operations First,

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5dfs.htm (4 of 13) [21/08/2002 19:18:55]

Iterator

Next, IsDone, and Currentltem.4 Some additional operations might prove useful. For example,
ordered aggregates can have a Previous operation that positions the iterator to the previous
element. A SkipTo operation is useful for sorted or indexed collections. SkipTo positions the
iterator to an object matching specific criteria.

5. Using polymorphic iteratorsin C++. Polymorphic iterators have their cost. They require the
iterator object to be allocated dynamically by afactory method. Hence they should be used only
when there's aneed for polymorphism. Otherwise use concrete iterators, which can be alocated
on the stack.

Polymorphic iterators have another drawback: the client is responsible for deleting them. Thisis
error-prone, because it's easy to forget to free a heap-allocated iterator object when you're finished
with it. That's especially likely when there are multiple exit pointsin an operation. And if an
exception is triggered, the iterator object will never be freed.

The Proxy (207) pattern provides aremedy. We can use a stack-allocated proxy as a stand-in for
the real iterator. The proxy deletes the iterator in its destructor. Thus when the proxy goes out of
scope, the real iterator will get deallocated along with it. The proxy ensures proper cleanup, even
in the face of exceptions. Thisis an application of the well-known C++ technique "resource
alocationisinitialization" [ES90]. The Sample Code gives an example.

6. Iterators may have privileged access. An iterator can be viewed as an extension of the aggregate
that created it. The iterator and the aggregate are tightly coupled. We can express this close
relationship in C++ by making theiterator af r i end of its aggregate. Then you don't need to
define aggregate operations whose sole purpose is to let iterators implement traversal efficiently.

However, such privileged access can make defining new traversals difficult, since it'll require
changing the aggregate interface to add another friend. To avoid this problem, the Iterator class
can include pr ot ect ed operations for accessing important but publicly unavailable members of
the aggregate. Iterator subclasses (and only Iterator subclasses) may use these protected operations
to gain privileged access to the aggregate.

7. Iteratorsfor composites. External iterators can be difficult to implement over recursive aggregate
structures like those in the Composite (163) pattern, because a position in the structure may span
many levels of nested aggregates. Therefore an external iterator has to store a path through the
Composite to keep track of the current object. Sometimesit's easier just to use an internal iterator.
It can record the current position simply by calling itself recursively, thereby storing the path
implicitly in the call stack.

If the nodes in a Composite have an interface for moving from a node to its siblings, parents, and
children, then a cursor-based iterator may offer a better alternative. The cursor only needs to keep
track of the current node; it can rely on the node interface to traverse the Composite.

Composites often need to be traversed in more than one way. Preorder, postorder, inorder, and
breadth-first traversals are common. Y ou can support each kind of traversal with a different class
of iterator.

8. Null iterators. A Nulllterator isadegenerate iterator that's helpful for handling boundary
conditions. By definition, a Nulllterator is always done with traversal; that is, its IsDone operation
always evaluates to true.

Nulllterator can make traversing tree-structured aggregates (like Composites) easier. At each
point in the traversal, we ask the current element for an iterator for its children. Aggregate
elements return a concrete iterator as usual. But leaf elements return an instance of Nulllterator.
That lets us implement traversal over the entire structure in auniform way.

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5dfs.htm (5 of 13) [21/08/2002 19:18:55]

Iterator

v Sample Code

WE'l look at the implementation of asimple List class, which is part of our foundation library
(Appendix C). WEe'll show two lterator implementations, one for traversing the List in front-to-back
order, and another for traversing back-to-front (the foundation library supports only the first one). Then
we show how to use these iterators and how to avoid committing to a particular implementation. After
that, we change the design to make sure iterators get deleted properly. The last exampleillustrates an
internal iterator and comparesit to its external counterpart.

1. List and Iterator interfaces. First let's ook at the part of the List interface that's relevant to
implementing iterators. Refer to (Appendix C). for the full interface.

tenpl ate <class Itenp
class List {
publ i c:
Li st (1 ong size = DEFAULT_LI ST_CAPACI TY) ;

| ong Count () const;
Item& Get (I ong index) const;
I

b

ThelLi st class provides areasonably efficient way to support iteration through its public
interface. It's sufficient to implement both traversals. So there's no need to give iterators
privileged access to the underlying data structure; that is, the iterator classes are not friends of
Li st . To enable transparent use of the different traversals we define an abstract | t er at or
class, which defines the iterator interface.

tenpl ate <class Itenp
class Iterator {
publi c:
virtual void First() = 0;
virtual void Next() = O;
virtual bool |sDone() const = O;
virtual Item Currentltem) const = 0;
prot ect ed:
Iterator();

b
2. Iterator subclassimplementations. Li st |t er at or isasubclassof | t er at or.

tenpl ate <class Itenp
class Listlterator : public Iterator<itens {
publ i c:
Li stlterator(const List<ltenp* aList);
virtual void First();
virtual void Next();
virtual bool |sDone() const;
virtual Item Currentltem) const;

private:
const List<ltenp* _|ist;
| ong _current;

H

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5dfs.htm (6 of 13) [21/08/2002 19:18:55]

Iterator

The implementation of Li st | t er at or isstraightforward. It storesthe Li st along with an
index _current intothelist:

tenpl ate <class Itenp

Listlterator<litenp::Listlterator (
const List<Itenp* ali st

) ¢ _list(aList), _current(0) {

}

Fi r st positionsthe iterator to the first element:

tenpl ate <class Itenp

void Listlterator<itenp::First () {
_current = 0;

}

Next advances the current e ement:

tenpl ate <class Itenp

void Listlterator<litenp::Next () {
_current ++;

}

| sDone checks whether the index refers to an element within the List:

tenpl ate <class Itenp

bool Listlterator<litene::lsDone () const {
return _current >= _|ist->Count();

}

Finaly, Cur r ent | t emreturnstheitem at the current index. If the iteration has already
terminated, then wethrow an | t er at or Qut O Bounds exception:

tenpl ate <class Itenp
I[temListlterator<itenr::Currentltem () const {
if (lsDone()) {
throw | terator Qut O Bounds;
}

return _list->CGet(_current);

}

The implementation of ReverseListlterator isidentical, except itsFi r st operation positions
_current totheend of thelist, and Next decrements _cur r ent toward the first item.

3. Using theiterators. Let'sassumewe haveali st of Enpl oyee objects, and we would like to
print all the contained employees. The Enpl oyee class supportsthiswithaPr i nt operation.
To print thelist, we definea Pr i nt Enpl oyees operation that takes an iterator as an argument.
It usestheiterator to traverse and print the list.

voi d Print Enpl oyees (Iterator<Enployee*>& i) {
for (i.First(); 'i.lsDone(); i.Next()) {
i.Currentltem()->Print();
}

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5dfs.htm (7 of 13) [21/08/2002 19:18:55]

Iterator

Since we have iterators for both back-to-front and front-to-back traversals, we can reuse this
operation to print the employees in both orders.

Li st <Enpl oyee*>* enpl oyees;

/1

Li st1terator<Enpl oyee*> forward(enpl oyees);

Rever selLi st terator<Enpl oyee*> backwar d(enpl oyees) ;

Pri nt Enpl oyees(forward);
Pri nt Enpl oyees(backward) ;

4. Avoiding commitment to a specific list implementation. Let's consider how a skiplist variation of
Li st would affect our iteration code. A Ski pLi st subclassof Li st must provide a
Ski pLi st lterator that implementsthel t er at or interface. Internaly, the
Ski pLi st 1t erat or hasto keep more than just an index to do the iteration efficiently. But
since Ski pLi stlterator conformstothel t er at or interface, the Pri nt Enpl oyees
operation can aso be used when the employees are stored in a Ski pLi st object.

Ski pLi st <Enpl oyee*>* enpl oyees;
11

Ski pLi stlterator<Enpl oyee*> iterator(enpl oyees);
Pri nt Enpl oyees(iterator);

Although this approach works, it would be better if we didn't have to commit to a specific Li st
implementation, namely Ski pLi st . We can introduce an Abst r act Li st classto standardize
the list interface for different list implementations. Li st and Ski pLi st become subclasses of
AbstractList.

To enable polymorphic iteration, Abst r act Li st defines afactory method
Creat el t er at or, which subclasses override to return their corresponding iterator:

tenpl ate <class Itenp

cl ass AbstractList {

publ i c:
virtual Iterator<itenp* Createlterator() const = O;
I

s

An aternative would be to define ageneral mixin class Tr aver sabl e that defines the interface
for creating an iterator. Aggregate classes can mix in Tr aver sabl e to support polymorphic
iteration.

Li st overridesCreat el t erat or toreturnalLi st |t erat or object:

tenpl ate <class Itenp

Iterator<litemp* List<ltenp::Createlterator () const {
return new Listlterator<itens(this);

}

Now we're in aposition to write the code for printing the employees independent of a concrete
representation.

/1 we know only that we have an AbstractLi st
AbstractLi st <Enpl oyee*>* enpl oyees;

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5dfs.htm (8 of 13) [21/08/2002 19:18:55]

Iterator

11

| t er at or <Enpl oyee*>* iterator = enployees->Createlterator();
Pri nt Enpl oyees(*iterator);
delete iterator;

5. Making sureiterators get deleted. Notice that Cr eat el t er at or returns a newly allocated
iterator object. We're responsible for deleting it. If we forget, then we've created a storage leak. To
make life easier for clients, we'll providean | t er at or Pt r that acts as a proxy for an iterator. It
takes care of cleaningup thel t er at or object when it goes out of scope.

|t erat or Pt r isalways alocated on the stack.2 C++ automatically takes care of calling its
destructor, which deletes the real iterator. | t er at or Pt r overloads both oper at or - > and
operat or * insuchaway that anl t er at or Pt r can be treated just like a pointer to an
iterator. The membersof | t er at or Pt r are al implemented inline; thus they can incur no
overhead.

tenpl ate <class Itenp
class IteratorPtr {

publi c:
IteratorPtr(lterator<itens* i): _i(i) { }
~lteratorPtr() { delete _i; }
Iterator<ltenmp* operator->() { return _i; }
Iterator<ltenr& operator*() { return *_i; }
private:

/1 disallow copy and assignnent to avoid
/1 multiple deletions of _i:

IteratorPtr(const lteratorPtr&);

IteratorPtr& operator=(const lteratorPtr&);
private:

Iterator<litent* _i;

i
I teratorPtr letsussimplify our printing code:

Abstract Li st <Enpl oyee*>* enpl oyees;
/1

| teratorPtr<Enpl oyee*> iterator(enpl oyees->Createlterator());
Pri nt Enpl oyees(*iterator);

6. Aninternal Listlterator. Asafinal example, let'slook at a possible implementation of an internal
or passiveLi st 1t erator class. Heretheiterator controls the iteration, and it applies an
operation to each element.

Theissuein this caseis how to parameterize the iterator with the operation we want to perform on
each element. C++ does not support anonymous functions or closures that other languages
provide for thistask. There are at least two options: (1) Passin a pointer to afunction (global or
static), or (2) rely on subclassing. In thefirst case, the iterator calls the operation passed to it at
each point in the iteration. In the second case, the iterator calls an operation that a subclass
overrides to enact specific behavior.

Neither option is perfect. Often you want to accumulate state during the iteration, and functions
aren't well-suited to that; we would have to use static variables to remember the state. An

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5dfs.htm (9 of 13) [21/08/2002 19:18:55]

Iterator

| t er at or subclass provides us with a convenient place to store the accumulated state, likein an
instance variable. But creating a subclass for every different traversal is more work.

Here's a sketch of the second option, which uses subclassing. We call the internal iterator a
Li st Traver ser.

tenpl ate <class Itenp
cl ass ListTraverser {
publ i c:
Li st Traverser (List<ltenmr* aList);
bool Traverse();
pr ot ect ed:
virtual bool Processltem(const Item&) = O;
private:
Listlterator<iten> _iterator;

s

Li st Traver ser takesali st instance as aparameter. Internally it uses an external

Li stlterator todothetraversal. Tr aver se startsthe traversal and callsPr ocesslt em
for each item. Theinternal iterator can choose to terminate atraversal by returning f al se from
Processlt em Tr aver se returns whether the traversal terminated prematurely.

tenpl ate <class Itenp

Li st Traverser<ltenp:: Li st Traverser (
Li st<ltenp* alLi st

) : _iterator(aList) { }

tenpl ate <class Itenp
bool ListTraverser<itens:: Traverse () {
bool result = fal se;

for (
_iterator.First();
I iterator.|sDone();
_iterator. Next ()

) |
result = Processliten(_iterator.Currentltem());
if (result == false) {
br eak;
}
}

return result;

}

Let'suseali st Traver ser to print the first 10 employees from our employeelist. To do it we
haveto subclassLi st Tr aver ser and override Pr ocessl t em We count the number of
printed employeesina_count instance variable.

cl ass Print NEnpl oyees : public ListTraverser<Enpl oyee*> {
publ i c:
Pri nt NEnpl oyees(Li st <Enpl oyee*>* alist, int n)
Li st Traver ser <Enpl oyee*>(aLi st),
_total (n), _count(0) { }

prot ect ed:

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5dfs.htm (10 of 13) [21/08/2002 19:18:55]

Iterator

bool Processltem Enpl oyee* const &) ;

private:
int total;
int _count;
1
bool Print NEnpl oyees: : Processltem (Enpl oyee* const& e) {
_count ++;
e->Print();

return _count < _total;

}

Here'show Pr i nt NEnpl oyees printsthefirst 10 employees on the list:

Li st <Enpl oyee*>* enpl oyees;
/11

Pri nt NEnpl oyees pa(enpl oyees, 10);
pa. Traverse();

Note how the client doesn't specify the iteration loop. The entire iteration logic can be reused.
Thisisthe primary benefit of an interna iterator. It's a bit more work than an external iterator,
though, because we have to define a new class. Contrast this with using an external iterator:

Li stlterator<Enpl oyee*> i (enpl oyees);
int count = O;

for (i.First(); 'i.lsDone(); i.Next()) {
count ++;
i.Currentlten()->Print();

if (count >= 10) {
br eak;
}
}

Internal iterators can encapsulate different kinds of iteration. For example,
Fil teringLi st Traver ser encapsulates an iteration that processes only items that satisfy a
test:

tenpl ate <class Itenp
class FilteringListTraverser {
publi c:
FilteringListTraverser(List<ltenmr* alist);
bool Traverse();
pr ot ect ed:
virtual bool Processltem(const Item&) = O;
virtual bool Testlten{const Item&) = O;
private:
Listlterator<iten» _iterator,;

H

ThisinterfaceisthesameasLi st Tr aver ser 'sexcept for an added Test | t emmember
function that defines the test. Subclasses override Test | t emto specify the test.

Tr aver se decides to continue the traversal based on the outcome of the test:

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5dfs.htm (11 of 13) [21/08/2002 19:18:55]

Iterator

tenpl ate <class Itenp
void FilteringListTraverser<itenr::Traverse () {
bool result = false;

for (
_iterator.First();
I iterator.|sDone();
_iterator. Next()

) |
if (Testltem _iterator.Currentlten())) {
result = Processliten(_iterator.Currentltem());
if (result == false) {
br eak;
}
}
}

return result;

}

A variant of this class could define Tr aver se to return if at least one item satisfies the test.6

* Khown Uses

Iterators are common in object-oriented systems. Most collection class libraries offer iteratorsin one
form or another.

Here's an example from the Booch components [Boo94], a popular collection classlibrary. It provides
both a fixed size (bounded) and dynamically growing (unbounded) implementation of a queue. The
gueue interface is defined by an abstract Queue class. To support polymorphic iteration over the different
gueue implementations, the queue iterator isimplemented in the terms of the abstract Queue class
interface. This variation has the advantage that you don't need a factory method to ask the queue
implementations for their appropriate iterator. However, it requires the interface of the abstract Queue
classto be powerful enough to implement the iterator efficiently.

Iterators don't have to be defined as explicitly in Smalltalk. The standard collection classes (Bag, Set,
Dictionary, OrderedCollection, String, etc.) define an internal iterator method do: , which takes a block
(i.e., closure) as an argument. Each element in the collection is bound to the local variable in the block;
then the block is executed. Smalltalk also includes a set of Stream classes that support an iterator-like
interface. ReadStream is essentially an Iterator, and it can act as an external iterator for all the sequential
collections. There are no standard external iterators for nonsequential collections such as Set and
Dictionary.

Polymorphic iterators and the cleanup Proxy described earlier are provided by the ET++ container
classes [WGM88]. The Unidraw graphical editing framework classes use cursor-based iterators [VL90].

ObjectWindows 2.0 [Bor94] provides a class hierarchy of iterators for containers. Y ou can iterate over

different container types in the same way. The ObjectWindow iteration syntax relies on overloading the
postincrement operator ++ to advance the iteration.

v Related Patterns

Composite (163): Iterators are often applied to recursive structures such as Composites.

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5dfs.htm (12 of 13) [21/08/2002 19:18:55]

Iterator

Factory Method (107): Polymorphic iterators rely on factory methods to instantiate the appropriate
Iterator subclass.

Memento (283) is often used in conjunction with the Iterator pattern. An iterator can use amemento to
capture the state of an iteration. The iterator stores the memento internally.

'y
p» Mediator

4 Interpreter

2Booch refersto external and internd iterators as active and passive iterators, respectively [Boo94]. The
terms "active" and "passive" describe the role of the client, not the level of activity in the iterator.

3Cursors are a simple example of the Memento (283) pattern and share many of its implementation
issues.

4We can make thisinterface even smaller by merging Next, IsDone, and Currentltem into asingle
operation that advances to the next object and returnsit. If the traversal isfinished, then this operation
returns a special value (O, for instance) that marks the end of the iteration.

SY ou can ensure this at compile-time just by declaring private newand del et e operators. An
accompanying implementation isn't needed.

6The Tr aver se operation in these examplesis a Template Method (325) with primitive operations
Test | temand Processl tem

Observer = Prototype + Proxy « Singleton = State + Strategy = Template Method = Visitor

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5dfs.htm (13 of 13) [21/08/2002 19:18:55]

Mediator

©

SEARCH

Intent
Mativation
Applicability
Structure
Participants
Collaborations
Consequences
Implementation
Sample Code
Known Uses
Related Patterns

Pattern Catalog | Conclusion

Case Study

Mediator Object Behavioral

| Contents |ﬁ.|i|:|ntu Hﬂﬂdﬂ'5| Glossary | Notation | Foundation | Bibliography | Index | Pattern Map |

v Intent

Define an object that encapsulates how a set of objects interact. Mediator promotes |oose coupling by
keeping objects from referring to each other explicitly, and it lets you vary their interaction
independently.

v Motivation

Object-oriented design encourages the distribution of behavior among objects. Such distribution can
result in an object structure with many connections between objects; in the worst case, every object ends
up knowing about every other.

Though partitioning a system into many objects generally enhances reusability, proliferating
interconnections tend to reduce it again. Lots of interconnections make it less likely that an object can
work without the support of others—the system acts as though it were monolithic. Moreover, it can be
difficult to change the system's behavior in any significant way, since behavior is distributed among
many objects. As aresult, you may be forced to define many subclasses to customize the system's
behavior.

As an example, consider the implementation of dialog boxesin agraphical user interface. A dialog box
uses awindow to present a collection of widgets such as buttons, menus, and entry fields, as shown here:

::E Font Chosir e !ﬂ[

The quick brown fox...

Family (Ll

avant garde m
chicagp
courier
helvetica

palating
mes roman
zapf dinghars 3

Weght Cmediom ®bold ©demibold

Slant Croman ®italic Gobligue

Size [eondensed

((Cancel] [O)

Often there are dependencies between the widgets in the dialog. For example, a button gets disabled
when acertain entry field is empty. Selecting an entry in alist of choices called alist box might change
the contents of an entry field. Conversely, typing text into the entry field might automatically select one
or more corresponding entries in the list box. Once text appears in the entry field, other buttons may
become enabled that let the user do something with the text, such as changing or deleting the thing to

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5efs.htm (1 of 9) [21/08/2002 19:19:17]

javascript:loadApplet()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5e.htm#relatedpatterns
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5e.htm#knownuses
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5e.htm#samplecode
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5e.htm#implementation
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5e.htm#consequences
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5e.htm#collaborations
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5e.htm#participants
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5e.htm#structure
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5e.htm#applicability
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5e.htm#motivation
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5e.htm#intent
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/helpfs.htm
javascript:build()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/patcafs.htm

Mediator

which it refers.

Different dialog boxes will have different dependencies between widgets. So even though dialogs display
the same kinds of widgets, they can't ssimply reuse stock widget classes; they have to be customized to

reflect dialog-specific dependencies. Customizing them individually by subclassing will be tedious, since
many classes are involved.

Y ou can avoid these problems by encapsulating collective behavior in a separate mediator object. A
mediator is responsible for controlling and coordinating the interactions of a group of objects. The
mediator serves as an intermediary that keeps objects in the group from referring to each other explicitly.
The objects only know the mediator, thereby reducing the number of interconnections.

For example, FontDialogDirector can be the mediator between the widgets in adialog box. A
FontDialogDirector object knows the widgets in adialog and coordinates their interaction. It actsas a
hub of communication for widgets:

& diracior

director

nantDiaIngDirenmr-\H

o -

aB -

utton

director &

anEntryField

The following interaction diagram illustrates how the objects cooperate to handle a change in alist box's
selection:

Mediator Colleagues
aClient aFontDialogDirector alistBox anEntryField

ShowDialogl) i
e J

T WidgetChanged()
el
GetSelection|) I
e
SetText() T

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5efs.htm (2 of 9) [21/08/2002 19:19:17]

Mediator

Here's the succession of events by which alist box's selection passes to an entry field:
1. Thelist box tellsits director that it's changed.
2. Thedirector gets the selection from the list box.
3. Thedirector passes the selection to the entry field.

4. Now that the entry field contains some text, the director enables button(s) for initiating an action
(e.g., "demibold,” "oblique").

Note how the director mediates between the list box and the entry field. Widgets communicate with each
other only indirectly, through the director. They don't have to know about each other; all they know isthe
director. Furthermore, because the behavior islocalized in one class, it can be changed or replaced by
extending or replacing that class.

Here's how the FontDia ogDirector abstraction can be integrated into a class library:

DialogDirector - direclor | widget
ShowDialog() Changed() &------ dimm-;WidgmGhanged{thisH
CreateWidgals()
WidgetChanged Widpet) /L
AN
ListBox EntryField

list
FonlDialogDirector — B GetSelection() SetText()
CraatelWidnoets() figldd
WidgetChanged | Widget)

DiaogDirector is an abstract class that defines the overall behavior of adialog. Clients call the
ShowDialog operation to display the dialog on the screen. CreateéWidgets is an abstract operation for
creating the widgets of a dialog. WidgetChanged is another abstract operation; widgets call it to inform
their director that they have changed. DialogDirector subclasses override CreateéWidgets to create the
proper widgets, and they override WidgetChanged to handle the changes.

v Applicability
Use the Mediator pattern when

. aset of objects communicate in well-defined but complex ways. The resulting interdependencies
are unstructured and difficult to understand.

. reusing an object is difficult because it refers to and communicates with many other objects.

. abehavior that's distributed between severa classes should be customizable without alot of
subclassing.

v Structure

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5efs.htm (3 of 9) [21/08/2002 19:19:17]

Mediator

. mediator
Mediator |ea Colleague

?

ConcreteMediator [ConcreteColleague ’-. ConcreteColleague2

A typical object structure might look like this:

aColleague

f:ﬁnimagug
aﬂuncmmugdiatgrq“i——l mediator

l\q \ S
S
[aColleague |(s————
mediator
—l-"f;:nlleague

mediator

v Participants

. Mediator (DialogDirector)
o defines an interface for communicating with Colleague objects.
. ConcreteMediator (FontDia ogDirector)
o implements cooperative behavior by coordinating Colleague objects.
o knows and maintains its colleagues.
. Colleague classes (ListBox, EntryField)
o each Colleague class knows its Mediator object.

o each colleague communicates with its mediator whenever it would have otherwise
communicated with another colleague.

v Collaborations

. Colleagues send and receive requests from a Mediator object. The mediator implements the

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5efs.htm (4 of 9) [21/08/2002 19:19:17]

Mediator

cooperative behavior by routing requests between the appropriate colleague(s).

v Consequences

The Mediator pattern has the following benefits and drawbacks:

1. It limits subclassing. A mediator localizes behavior that otherwise would be distributed among
several objects. Changing this behavior requires subclassing Mediator only; Colleague classes can
bereused asis.

2. It decouples colleagues. A mediator promotes |oose coupling between colleagues. Y ou can vary
and reuse Colleague and Mediator classes independently.

3. It simplifies object protocols. A mediator replaces many-to-many interactions with one-to-many
interactions between the mediator and its colleagues. One-to-many relationships are easier to
understand, maintain, and extend.

4. It abstracts how objects cooperate. Making mediation an independent concept and encapsulating
it in an object lets you focus on how objects interact apart from their individual behavior. That can
help clarify how objectsinteract in a system.

5. It centralizes control. The Mediator pattern trades complexity of interaction for complexity in the
mediator. Because a mediator encapsulates protocols, it can become more complex than any
individual colleague. This can make the mediator itself a monolith that's hard to maintain.

v Implementation

The following implementation issues are relevant to the Mediator pattern:

1. Omitting the abstract Mediator class. There's no need to define an abstract Mediator class when
colleagues work with only one mediator. The abstract coupling that the Mediator class provides
lets colleagues work with different Mediator subclasses, and vice versa.

2. Colleague-Mediator communication. Colleagues have to communicate with their mediator when
an event of interest occurs. One approach isto implement the Mediator as an Observer using the
Observer (293) pattern. Colleague classes act as Subjects, sending notifications to the mediator
whenever they change state. The mediator responds by propagating the effects of the change to
other colleagues.

Another approach defines a specialized notification interface in Mediator that lets colleagues be
more direct in their communication. Smalltalk/V for Windows uses aform of delegation: When
communicating with the mediator, a colleague passes itself as an argument, allowing the mediator
to identify the sender. The Sample Code uses this approach, and the Smalltalk/V implementation
is discussed further in the Known Uses.

v Sample Code

WEe'll use aDialogDirector to implement the font dialog box shown in the Motivation. The abstract class
Di al ogDi r ect or definestheinterface for directors.

cl ass Di al oghirector {
publi c:

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5efs.htm (5 of 9) [21/08/2002 19:19:17]

Mediator

virtual ~Dial ogDirector();

virtual void ShowbDi al og();
virtual void Wdget Changed(W dget*) = O0;

pr ot ect ed:
Di al ogDirector();
virtual void CreateWdgets() = O;

i
W dget isthe abstract base class for widgets. A widget knows its director.

cl ass Wdget {

publi c:
W dget (Di al ogDhi rector*);
virtual void Changed();

virtual void Handl eMbuse(MouseEvent & event);
11

private:
D al ogDirector* _director;

s

Changed callsthe director's W dget Changed operation. Widgets call W dget Changed on their
director to inform it of a significant event.

voi d Wdget:: Changed () {
_director->Wdget Changed(this);
}

Subclasses of Di al ogDi r ect or override W dget Changed to affect the appropriate widgets. The
widget passes areference to itself as an argument to W dget Changed to let the director identify the
widget that changed. Di al ogDi r ect or subclasses redefine the Cr eat eW dget s pure virtua to
construct the widgetsin the dialog.

TheLi st Box, Ent ryFi el d, and But t on are subclasses of W dget for specialized user interface
elements. Li st Box providesaGet Sel ect i on operation to get the current selection, and
Ent ryFi el d'sSet Text operation puts new text into the field.

cl ass ListBox : public Wdget {
publi c:
Li st Box(Di al ogDi rector*);

virtual const char* GCetSel ection();

virtual void SetlList(List<char*>* |istltens);
virtual void Handl eMbuse(MouseEvent & event);
11

b

class EntryField : public Wdget {
publi c:
EntryFi el d(Di al ogDirector*);

virtual void SetText(const char* text);
virtual const char* GetText();

virtual void Handl eMbuse(MouseEvent & event);
11

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5efs.htm (6 of 9) [21/08/2002 19:19:17]

Mediator

b

But t on isasimple widget that calls Changed whenever it's pressed. This gets donein its
implementation of Handl eMbuse:

class Button : public Wdget {
publi c:
Butt on(Di al ogDi rector*);

virtual void SetText(const char* text);
virtual void Handl eMbuse(MouseEvent & event);

11

s

voi d Button:: Handl eMouse (MuseEvent & event) {
1. ..
Changed() ;

}

The Font Di al ogDi r ect or class mediates between widgets in the dialog box.
Font Di al ogDi rect or isasubclassof Di al ogDi r ect or:

class FontDi al ogDirector : public D alogDrector {
publi c:

Font Di al ogDi rector();

virtual ~FontDi al oghirector();

virtual void Wdget Changed(W dget *);

pr ot ect ed:
virtual void CreateWdgets();

private:
Butt on* _ok;
Butt on* _cancel;
Li st Box* _fontList;
EntryFi el d* _f ont Nane;

H

Font Di al ogDi r ect or keepstrack of the widgetsit displays. It redefines Cr eat eW dget s to
create the widgets and initialize its references to them:

voi d FontDi al ogDirector::CreateWdgets () {
_0ok = new Button(this);
_cancel = new Button(this);
_fontList = new ListBox(this);
_fontNane = new EntryField(this);

/] fill the listBox with the avail able font nanes

/1l assenble the widgets in the dialog
}

W dget Changed ensures that the widgets work together properly:

voi d Font Di al ogDi rector:: Wdget Changed (
W dget * t heChangedW dget
) A

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5efs.htm (7 of 9) [21/08/2002 19:19:17]

Mediator

i f (theChangedW dget == fontlList) {

_font Nane- >Set Text (_fontLi st->Get Sel ection());
} else if (theChangedWdget == _ok) {

/1 apply font change and di sm ss dial og

I/
} else if (theChangedW dget == _cancel) {

/1 dism ss dial og

}
}

The complexity of W dget Changed increases proportionally with the complexity of the dialog. Large
dialogs are undesirable for other reasons, of course, but mediator complexity might mitigate the pattern's
benefits in other applications.

* Known Uses

Both ET++ [WGM88] and the THINK C class library [Sym93b] use director-like objects in dialogs as
mediators between widgets.

The application architecture of Smalltalk/V for Windows is based on a mediator structure [LalL94]. In
that environment, an application consists of a Window containing a set of panes. The library contains
several predefined Pane objects, examples include TextPane, ListBox, Button, and so on. These panes
can be used without subclassing. An application developer only subclasses from ViewManager, a class
that's responsible for doing inter-pane coordination. ViewManager is the Mediator, and each pane only
knows its view manager, which is considered the "owner" of the pane. Panes don't refer to each other
directly.

The following object diagram shows a snapshot of an application at run-time:

cUﬂBDI
OWNEr ¢
4
aviewManager
™, —® textPana
aTextPane L * lisiBox
OWNEr w -I‘_. [Tl g]

aButton p——————

CWNSr W

Smalltalk/V uses an event mechanism for Pane-ViewManager communication. A pane generates an
event when it wants to get information from the mediator or when it wants to inform the mediator that
something significant happened. An event defines asymbol (e.g., #sel ect) that identifies the event. To
handle the event, the view manager registers a method selector with the pane. This selector isthe event's
handler; it will be invoked whenever the event occurs.

The following code excerpt shows how a ListPane object gets created inside a ViewManager subclass

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5efs.htm (8 of 9) [21/08/2002 19:19:17]

Mediator

and how ViewManager registers an event handler for the#sel ect event:

sel f addSubpane: (ListPane new
paneName: ' mnyLi st Pane';
owner: self;
when: #select perform #listSelect:).

Another application of the Mediator pattern isin coordinating complex updates. An exampleisthe
ChangeManager class mentioned in Observer (293). ChangeManager mediates between subjects and

observersto avoid redundant updates. When an object changes, it notifies the ChangeManager, which in
turn coordinates the update by notifying the object's dependents.

A similar application appears in the Unidraw drawing framework [V L90] and uses a class called CSolver

to enforce connectivity constraints between "connectors.” Objectsin graphical editors can appear to stick
to one another in different ways. Connectors are useful in applications that maintain connectivity
automatically, like diagram editors and circuit design systems. CSolver is a mediator between
connectors. It solves the connectivity constraints and updates the connectors' positions to reflect them.

v Related Patterns

Facade (185) differs from Mediator in that it abstracts a subsystem of objects to provide a more

convenient interface. Its protocol is unidirectional; that is, Facade objects make requests of the subsystem
classes but not vice versa. In contrast, Mediator enables cooperative behavior that colleague objects don't
or can't provide, and the protocol is multidirectional.

Colleagues can communicate with the mediator using the Observer (293) pattern.

Y
» Memento

« lterator

Abstract Factory = Adapter « Bridge = Builder = Chain of Responsibility = Command « Composite »
De tor *+ Facade * Factory Method = Flyweight = Interpreter = lterator = Mediator = Memento *
Observer = Prototype + Proxy + Singleton = State + Strategy =+ Template Method = Visitor

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5efs.htm (9 of 9) [21/08/2002 19:19:17]

Memento

Help | Intro | Case Study | Pattern Catalog | Conclusion

G) Mementﬂ Object Behavioral

SEARCH
| Contents |Guide to Readers | Glossary | Notation | Foundation | Bibliography | Index | Pattern Map |

Intent
Mativation
Applicability
Structure

A Without violating encapsulation, capture and externalize an object's internal state so that the object can
SLELEE he restored to this state | ater.
Consequences

WU v Also Known AS
Sample Code

v Intent

Known Uses [ofoPg)
Related Patterns

v Motivation

Sometimes it's necessary to record the internal state of an object. Thisis required when implementing
checkpoints and undo mechanisms that let users back out of tentative operations or recover from errors.
Y ou must save state information somewhere so that you can restore objects to their previous states. But
objects normally encapsulate some or all of their state, making it inaccessible to other objects and
impossible to save externally. Exposing this state would viol ate encapsulation, which can compromise
the application's reliability and extensibility.

Consider for example a graphical editor that supports connectivity between objects. A user can connect
two rectangles with aline, and the rectangles stay connected when the user moves either of them. The
editor ensures that the line stretches to maintain the connection.

A well-known way to maintain connectivity relationships between objects is with a constraint-solving
system. We can encapsulate this functionality in a ConstraintSolver object. ConstraintSolver records
connections as they are made and generates mathematical equations that describe them. It solves these
equations whenever the user makes a connection or otherwise modifies the diagram. ConstraintSolver
uses the results of its calculations to rearrange the graphics so that they maintain the proper connections.

Supporting undo in this application isn't as easy as it may seem. An obvious way to undo a move
operation isto store the original distance moved and move the object back an equivalent distance.
However, this does not guarantee all objects will appear where they did before. Suppose thereis some
slack in the connection. In that case, smply moving the rectangle back to its original location won't
necessarily achieve the desired effect.

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5ffs.htm (1 of 8) [21/08/2002 19:20:03]

javascript:loadApplet()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5f.htm#relatedpatterns
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5f.htm#knownuses
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5f.htm#samplecode
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5f.htm#implementation
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5f.htm#consequences
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5f.htm#collaborations
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5f.htm#participants
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5f.htm#structure
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5f.htm#applicability
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5f.htm#motivation
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5f.htm#intent
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/helpfs.htm
javascript:build()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/patcafs.htm

Memento

In general, the ConstraintSolver's public interface might be insufficient to allow precise reversal of its
effects on other objects. The undo mechanism must work more closely with ConstraintSolver to
reestablish previous state, but we should aso avoid exposing the ConstraintSolver's internal s to the undo
mechanism.

We can solve this problem with the Memento pattern. A memento is an object that stores a snapshot of
the internal state of another object—the memento's originator. The undo mechanism will request a
memento from the originator when it needs to checkpoint the originator's state. The originator initializes
the memento with information that characterizesits current state. Only the originator can store and
retrieve information from the memento—the memento is "opague" to other objects.

In the graphical editor example just discussed, the ConstraintSolver can act as an originator. The
following sequence of events characterizes the undo process:

1. The editor requests a memento from the ConstraintSolver as a side-effect of the move operation.

2. The ConstraintSolver creates and returns a memento, an instance of a class SolverState in this
case. A SolverState memento contains data structures that describe the current state of the
ConstraintSolver's internal equations and variables.

3. Later when the user undoes the move operation, the editor gives the SolverState back to the
ConstraintSolver.

4. Based on the information in the SolverState, the ConstraintSolver changes itsinternal structuresto
return its equations and variablesto their exact previous state.

This arrangement lets the ConstraintSolver entrust other objects with the information it needs to revert to
aprevious state without exposing itsinternal structure and representations.

v Applicability
Use the Memento pattern when

. asnapshot of (some portion of) an object's state must be saved so that it can be restored to that
state later, and

. adirect interface to obtaining the state would expose implementation details and break the object's
encapsul ation.

v Structure

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5ffs.htm (2 of 8) [21/08/2002 19:20:03]

Memento

Originator | | Memento _.m Carataker
SetMemento{Memento my GielStatel)
CreateMementol) ¢ | SalState])
state i i state
| |
Tl
retum new Memeanto(state) state = m-=GetState()

v Participants

. Memento (SolverState)

o storesinternal state of the Originator object. The memento may store as much or as little of
the originator's internal state as necessary at its originator's discretion.

o protects against access by objects other than the originator. Mementos have effectively two
interfaces. Caretaker sees a narrow interface to the Memento—it can only pass the
memento to other objects. Originator, in contrast, sees awide interface, one that lets it
access all the data necessary to restore itself to its previous state. Ideally, only the
originator that produced the memento would be permitted to access the memento's internal
state.

. Originator (ConstraintSolver)
o Creates a memento containing a snapshot of its current internal state.
o usesthe memento to restoreits internal state.

. Caretaker (undo mechanism)
o isresponsible for the memento's safekeeping.

o hever operates on or examines the contents of a memento.

v Collaborations

. A caretaker requests a memento from an originator, holds it for atime, and passesit back to the
originator, as the following interaction diagram illustrates:

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5ffs.htm (3 of 8) [21/08/2002 19:20:03]

Memento

aCaretaker anQOriginator aMemento

- CreateMamentol) :
naw Memenio !

SetStatel)

SethementolabMementa) .

GetState()

L

Sometimes the caretaker won't pass the memento back to the originator, because the originator
might never need to revert to an earlier state.

. Mementos are passive. Only the originator that created a memento will assign or retrieve its state.

¥ Consequences

The Memento pattern has several consequences:

1. Preserving encapsulation boundaries. Memento avoids exposing information that only an
originator should manage but that must be stored nevertheless outside the originator. The pattern
shields other objects from potentially complex Originator internals, thereby preserving
encapsulation boundaries.

2. It simplifies Originator. In other encapsulation-preserving designs, Originator keeps the versions
of internal state that clients have requested. That puts all the storage management burden on
Originator. Having clients manage the state they ask for ssmplifies Originator and keeps clients
from having to notify originators when they're done.

3. Using mementos might be expensive. Mementos might incur considerable overhead if Originator
must copy large amounts of information to store in the memento or if clients create and return
mementos to the originator often enough. Unless encapsulating and restoring Originator stateis
cheap, the pattern might not be appropriate. See the discussion of incrementality in the
I mplementation section.

4. Defining narrow and wide interfaces. It may be difficult in some languages to ensure that only the
originator can access the memento's state.

5. Hidden costsin caring for mementos. A caretaker is responsible for deleting the mementos it
cares for. However, the caretaker has no idea how much state is in the memento. Hence an
otherwise lightweight caretaker might incur large storage costs when it stores mementos.

v Implementation

Here are two issues to consider when implementing the Memento pattern:

1. Language support. Mementos have two interfaces: awide one for originators and a narrow one
for other objects. Ideally the implementation language will support two levels of static protection.

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5ffs.htm (4 of 8) [21/08/2002 19:20:03]

Memento

C++ lets you do this by making the Originator afriend of Memento and making Memento's wide
interface private. Only the narrow interface should be declared public. For example:

class State;

class Originator {
publ i c:
Merment o* Creat eMenent o() ;
voi d Set Menent o(const Menent 0*);

I

private:
State* _state; /1 internal data structures
/1

1

cl ass Menento {

publ i c:

/'l narrow public interface
virtual ~Menento();
private:
/1 private nenbers accessible only to O gi nator
friend class Oiginator;
Menent o() ;

voi d Set State(State*);
State* GetState();
/1
private:
State* _state;
/1

H

2. Soring incremental changes. When mementos get created and passed back to their originator in a
predictable sequence, then Memento can save just the incremental change to the originator's
internal state.

For example, undoable commands in a history list can use mementos to ensure that commands are
restored to their exact state when they're undone (see Command (233)). The history list defines a
specific order in which commands can be undone and redone. That means mementos can store
just the incremental change that a command makes rather than the full state of every object they
affect. In the Motivation example given earlier, the constraint solver can store only those internal
structures that change to keep the line connecting the rectangles, as opposed to storing the
absolute positions of these objects.

v Sample Code

The C++ code given hereillustrates the ConstraintSolver example discussed earlier. We use
MoveCommand objects (see Command (233)) to (un)do the tranglation of a graphical object from one
position to another. The graphical editor calls the command's Execut e operation to move a graphical
object and Unexecut e to undo the move. The command stores its target, the distance moved, and an
instance of Const r ai nt Sol ver Menent o, amemento containing state from the constraint solver.

cl ass G aphi c;
/'l base class for graphical objects in the graphical editor

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5ffs.htm (5 of 8) [21/08/2002 19:20:03]

Memento

cl ass MoveCommand {
publi c:
MoveCommand(G- aphi c* target, const Point& delta);
voi d Execute();
voi d Unexecute();
private:
Constrai nt Sol ver Menent o* _state;
Poi nt _delta;
Graphic* _target;
i

The connection constraints are established by the class Const r ai nt Sol ver . Its key member function
isSol ve, which solves the constraints registered with the AddConst r ai nt operation. To support
undo, Const r ai nt Sol ver 's state can be externalized with Cr eat eMenent o into a

Const rai nt Sol ver Menent o instance. The constraint solver can be returned to a previous state by
calling Set Menent o. Const r ai nt Sol ver isaSingleton (127).

cl ass Constraint Sol ver {
publi c:
static ConstraintSolver* Instance();

voi d Sol ve();
voi d AddConstr ai nt (
Graphi c* start Connection, G aphic* endConnection
)
voi d RenoveConstrai nt (
Graphi c* startConnection, G aphic* endConnection

)

Constr ai nt Sol ver Menent o* Creat eMenent o() ;

voi d Set Menent o(Const r ai nt Sol ver Menent o*) ;
private:

/1 nontrivial state and operations for enforcing

/1l connectivity semantics

i
cl ass Constraint Sol ver Menment o {
publi c:
virtual ~Constraint Sol ver Menent o() ;
private:
friend class Constraint Sol ver;
Const r ai nt Sol ver Menent o() ;
[/l private constraint solver state
i

Given these interfaces, we can implement Move Command members Execut e and Unexecut e as
follows:

voi d MoveCommand: : Execute () {
Constrai nt Sol ver* sol ver = ConstraintSol ver::Instance();
_state = solver->CreateMenento(); // create a nenmento
_target->Mve(_delta);
sol ver->Sol ve();

}

voi d MobveConmand: : Unexecute () {

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5ffs.htm (6 of 8) [21/08/2002 19:20:03]

Memento

Constrai nt Sol ver* sol ver = Constraint Sol ver::Instance();
_target->Mwve(-_delta);

sol ver->Set Menento(_state); // restore solver state

sol ver - >Sol ve();

}

Execut e acquiresaConst r ai nt Sol ver Menent o memento before it moves the graphic.
Unexecut e moves the graphic back, sets the constraint solver's state to the previous state, and finally
tells the constraint solver to solve the constraints.

* Known Uses

The preceding sample code is based on Unidraw's support for connectivity through its CSolver class

[VL9O].

Collectionsin Dylan [App92] provide an iteration interface that reflects the Memento pattern. Dylan's
collections have the notion of a"state" object, which is a memento that represents the state of the
iteration. Each collection can represent the current state of the iteration in any way it chooses; the
representation is completely hidden from clients. The Dylan iteration approach might be translated to
C++ asfollows:

tenpl ate <class Itenp
class Coll ection {
publi c:

Col l ection();

IterationState* Createlnitial State();

void Next(lterationState*);

bool IsDone(const IterationState*) const;

I[tem Currentlten{const lterationState*) const;
IterationState* Copy(const IterationState*) const;

voi d Append(const Iten®);
voi d Renove(const lten&);
/1

s

Createlnitial Statereturnsaninitiadlized | t er ati onSt at e object for the collection. Next
advances the state object to the next position in the iteration; it effectively increments the iteration index.
| sDone returnst r ue if Next has advanced beyond the last element in the collection. Cur rent | t em
dereferences the state object and returns the element in the collection to which it refers. Copy returns a
copy of the given state object. Thisis useful for marking a point in an iteration.

Givenaclass| t enType, we can iterate over a collection of itsinstances as follows!:

class Itenilype {

publi c:
voi d Process();
11

s

Col | ecti on<ItenType*> aCol | ecti on;
I[terationState* state;

state = aCollection.Createlnitial State();

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5ffs.htm (7 of 8) [21/08/2002 19:20:03]

Memento

while (!aColl ection.lsDone(state)) {
aCol l ection. Currentltemstate)->Process();
aCol | ection. Next(state);

}

del ete state;
The memento-based iteration interface has two interesting benefits:

1. More than one state can work on the same collection. (The same istrue of the Iterator (257)
pattern.)

2. It doesn't require breaking a collection's encapsulation to support iteration. The memento is only
interpreted by the collection itself; no one else has access to it. Other approaches to iteration
require breaking encapsulation by making iterator classes friends of their collection classes (see
Iterator (257)). The situation is reversed in the memento-based implementation: Col | ecti on is
afriend of thel t er at or St at e.

The QOCA constraint-solving toolkit stores incremental information in mementos [HHMV 92]. Clients
can obtain a memento that characterizes the current solution to a system of constraints. The memento
contains only those constraint variables that have changed since the last solution. Usually only a small
subset of the solver's variables changes for each new solution. This subset is enough to return the solver
to the preceding solution; reverting to earlier solutions requires restoring mementos from the intervening
solutions. Hence you can't set mementos in any order; QOCA relies on a history mechanism to revert to
earlier solutions.

v Related Patterns

Command (233): Commands can use mementos to maintain state for undoabl e operations.

Iterator (257): Mementos can be used for iteration as described earlier.

F Y
p» Observer

4 Mediator

"Note that our example deletes the state object at the end of theiteration. But del et e won't get called if
Pr ocessl t emthrows an exception, thus creating garbage. Thisis a problem in C++ but not in Dylan,
which has garbage collection. We discuss a solution to this problem on page 266.

Abstract Factory + Adapter = Bridge = Builder = Chain of Responsibility = Command + Composite =
De tor » Facade » Factory Method = Flyweight + Interpreter # lterator » Mediator » Memento »
Observer * Prototype * Proxy + Singleton » State * Strategy + Template Method + Visitor

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5ffs.htm (8 of 8) [21/08/2002 19:20:03]

Observer

©

SEARCH

Intent

Also Known As
Motivation
Applicability
Structure
Participants
Collaborations
Consequences
Implementation
Sample Code
Known Uses
Related Patterns

Casze Study

Pattern Catalog | Conclusion

Observer Object Behavioral

| Contents |Gui|:|ntu-ﬂnﬂdu5| Glossary | Notation | Foundation | Bibliography | Index | Pattern Map |

¥ Intent

Define a one-to-many dependency between abjects so that when one object changes state, all its dependents are
notified and updated automatically.

v Also Known As

Dependents, Publish-Subscribe

v Motivation

A common side-effect of partitioning a system into a collection of cooperating classesis the need to maintain
consistency between related objects. Y ou don't want to achieve consistency by making the classes tightly coupled,
because that reduces their reusability.

For example, many graphical user interface toolkits separate the presentational aspects of the user interface from the
underlying application data [K P88, LV C89, P+88, WGM88]. Classes defining application data and presentations
can be reused independently. They can work together, too. Both a spreadsheet object and bar chart object can depict
information in the same application data object using different presentations. The spreadsheet and the bar chart don't
know about each other, thereby letting you reuse only the one you need. But they behave as though they do. When
the user changes the information in the spreadsheet, the bar chart reflects the changes immediately, and vice versa.

ohservers
I viinciers e— v s e— | [t e— |)
alb |c
w| 60 30110
y| 50| 30 |20
z|BO[1010

——— change notification
———-= requests, modification

subject

This behavior implies that the spreadsheet and bar chart are dependent on the data object and therefore should be
notified of any changein its state. And there's no reason to limit the number of dependent objects to two; there may
be any number of different user interfaces to the same data.

The Observer pattern describes how to establish these relationships. The key objectsin this pattern are subject and
observer. A subject may have any number of dependent observers. All observers are notified whenever the subject
undergoes a change in state. In response, each observer will query the subject to synchronize its state with the
subject's state.

Thiskind of interaction is also known as publish-subscribe. The subject is the publisher of notifications. It sends
out these notifications without having to know who its observers are. Any number of observers can subscribe to
receive notifications.

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5gfs.htm (1 of 9) [21/08/2002 19:21:01]

javascript:loadApplet()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5g.htm#relatedpatterns
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5g.htm#knownuses
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5g.htm#samplecode
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5g.htm#implementation
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5g.htm#consequences
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5g.htm#collaborations
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5g.htm#participants
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5g.htm#structure
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5g.htm#applicability
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5g.htm#motivation
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5g.htm#alsoknownas
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5g.htm#intent
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/helpfs.htm
javascript:build()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/patcafs.htm

Observer

v Applicability
Use the Observer pattern in any of the following situations:

. When an abstraction has two aspects, one dependent on the other. Encapsul ating these aspects in separate
objects lets you vary and reuse them independently.

. When a change to one object requires changing others, and you don't know how many objects need to be
changed.

. When an object should be able to notify other objects without making assumptions about who these objects
are. In other words, you don't want these objects tightly coupled.

v Structure

Subject observers e Observer
Attach{Cbserver) Update()
Detach{Obsarver) _ e
Notify) o ——— - —] _ | forali o in observers |
o } o-=Update()
‘/—/LE‘ ConcreteObserver
: subject -} -{ observerState =
ConcreteSubject (g Lipdate() - subject-~GetState()
GetStatel) &---r 1 . e ohsamverState
SetState() refum subjectState
subjectState

¥ Participants
. Subject
o knowsits observers. Any number of Observer objects may observe a subject.
o provides an interface for attaching and detaching Observer objects.
. Observer
o defines an updating interface for objects that should be notified of changesin a subject.
. ConcreteSubject
o stores state of interest to ConcreteObserver objects.
o sends anotification to its observers when its state changes.
. ConcreteObserver
o maintains areference to a ConcreteSubject object.
o stores state that should stay consistent with the subject’s.

o implements the Observer updating interface to keep its state consistent with the subject's.

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5gfs.htm (2 of 9) [21/08/2002 19:21:01]

Observer

v Collaborations

. ConcreteSubject notifies its observers whenever a change occurs that could make its observers state
inconsistent with its own.

. After being informed of a change in the concrete subject, a ConcreteObserver object may query the subject
for information. ConcreteObserver uses thisinformation to reconcile its state with that of the subject.

The following interaction diagram illustrates the coll aborations between a subject and two observers:

aConcreteSubject aConcreteObserver anotherConcreteObserver

L SetState()

il

Notify() L

|

Update()

E‘-etStaleJ }

- L

Updatel)

- GetStateJ
o

Note how the Observer object that initiates the change request postpones its update until it gets a notification
from the subject. Notify is not aways called by the subject. It can be called by an observer or by another kind
of object entirely. The Implementation section discusses some common variations.

v Consequences

The Observer pattern lets you vary subjects and observers independently. Y ou can reuse subjects without reusing
their observers, and vice versa. It lets you add observers without modifying the subject or other observers.

Further benefits and liabilities of the Observer pattern include the following:

1. Abstract coupling between Subject and Observer. All asubject knowsisthat it has alist of observers, each
conforming to the simple interface of the abstract Observer class. The subject doesn't know the concrete class
of any observer. Thus the coupling between subjects and observersis abstract and minimal.

Because Subject and Observer aren't tightly coupled, they can belong to different layers of abstractionin a
system. A lower-level subject can communicate and inform a higher-level observer, thereby keeping the
system's layering intact. If Subject and Observer are lumped together, then the resulting object must either
span two layers (and violate the layering), or it must be forced to live in one layer or the other (which might
compromise the layering abstraction).

2. Support for broadcast communication. Unlike an ordinary request, the notification that a subject sends
needn't specify its receiver. The notification is broadcast automatically to al interested objects that
subscribed to it. The subject doesn't care how many interested objects exist; its only responsibility is to notify
its observers. This gives you the freedom to add and remove observers at any time. It's up to the observer to
handle or ignore a notification.

3. Unexpected updates. Because observers have no knowledge of each other's presence, they can be blind to the
ultimate cost of changing the subject. A seemingly innocuous operation on the subject may cause a cascade
of updates to observers and their dependent objects. Moreover, dependency criteria that aren't well-defined or

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5gfs.htm (3 of 9) [21/08/2002 19:21:01]

Observer

maintained usually lead to spurious updates, which can be hard to track down.

This problem is aggravated by the fact that the simple update protocol provides no details on what changed in
the subject. Without additional protocol to help observers discover what changed, they may be forced to work
hard to deduce the changes.

v Implementation

Several issues related to the implementation of the dependency mechanism are discussed in this section.

1. Mapping subjectsto their observers. The simplest way for a subject to keep track of the observersit should
notify is to store references to them explicitly in the subject. However, such storage may be too expensive
when there are many subjects and few observers. One solution isto trade space for time by using an
associative look-up (e.g., a hash table) to maintain the subject-to-observer mapping. Thus a subject with no
observers does not incur storage overhead. On the other hand, this approach increases the cost of accessing
the observers.

2. Observing more than one subject. It might make sense in some situations for an observer to depend on more
than one subject. For example, a spreadsheet may depend on more than one data source. It's necessary to
extend the Update interface in such cases to | et the observer know which subject is sending the notification.
The subject can simply passitself as a parameter in the Update operation, thereby letting the observer know
which subject to examine.

3. Who triggers the update? The subject and its observers rely on the notification mechanism to stay consistent.
But what object actually calls Notify to trigger the update? Here are two options:

a. Have state-setting operations on Subject call Notify after they change the subject's state. The
advantage of this approach is that clients don't have to remember to call Notify on the subject. The
disadvantage is that several consecutive operations will cause several consecutive updates, which may
be inefficient.

b. Make clients responsible for calling Notify at the right time. The advantage here is that the client can
wait to trigger the update until after a series of state changes has been made, thereby avoiding needless
intermediate updates. The disadvantage is that clients have an added responsibility to trigger the
update. That makes errors more likely, since clients might forget to call Notify.

4. Dangling references to deleted subjects. Deleting a subject should not produce dangling referencesin its
observers. One way to avoid dangling references is to make the subject notify its observers asit is deleted so
that they can reset their reference to it. In general, simply deleting the observersis not an option, because
other objects may reference them, or they may be observing other subjects as well.

5. Making sure Subject state is self-consistent before notification. It'simportant to make sure Subject stateis
self-consistent before calling Notify, because observers query the subject for its current state in the course of
updating their own state.

This self-consistency rule is easy to violate unintentionally when Subject subclass operations call inherited
operations. For example, the notification in the following code sequence is trigged when the subject isin an
inconsistent state:

void MySubject:: Operation (int newal ue) {
BaseC assSubj ect: : Oper ati on(newval ue) ;
[l trigger notification

_nmyl nstVar += newval ue;
/'l update subclass state (too |late!)

}

Y ou can avoid this pitfall by sending notifications from template methods (Template Method (325)) in
abstract Subject classes. Define a primitive operation for subclasses to override, and make Notify the last

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5gfs.htm (4 of 9) [21/08/2002 19:21:01]

Observer

operation in the template method, which will ensure that the object is self-consistent when subclasses
override Subject operations.

void Text::Cut (TextRange r) {
Repl aceRange(r); /1 redefined in subclasses
Notify();

}

By the way, it's always a good idea to document which Subject operations trigger notifications.

. Avoiding observer-specific update protocols: the push and pull models. Implementations of the Observer

pattern often have the subject broadcast additional information about the change. The subject passes this
information as an argument to Update. The amount of information may vary widely.

At one extreme, which we call the push model, the subject sends observers detailed information about the
change, whether they want it or not. At the other extreme is the pull model; the subject sends nothing but the
most minimal notification, and observers ask for details explicitly thereafter.

The pull model emphasizes the subject's ignorance of its observers, whereas the push model assumes subjects
know something about their observers' needs. The push model might make observers less reusable, because
Subject classes make assumptions about Observer classes that might not always be true. On the other hand,
the pull model may be inefficient, because Observer classes must ascertain what changed without help from
the Subject.

. Specifying modifications of interest explicitly. Y ou can improve update efficiency by extending the subject's

registration interface to allow registering observers only for specific events of interest. When such an event
occurs, the subject informs only those observers that have registered interest in that event. One way to
support this uses the notion of aspects for Subject objects. To register interest in particular events, observers
are attached to their subjects using

voi d Subject::Attach(Qoserver*, Aspect& interest);

wherei nt er est specifiesthe event of interest. At notification time, the subject supplies the changed aspect
to its observers as a parameter to the Update operation. For example:

voi d Cbserver: : Updat e(Subject*, Aspect& interest);

. Encapsulating complex update semantics. When the dependency relationship between subjects and observers

is particularly complex, an object that maintains these relationships might be required. We call such an object
aChangeM anager . Its purpose is to minimize the work required to make observers reflect a changein their
subject. For example, if an operation involves changes to several interdependent subjects, you might haveto
ensure that their observers are notified only after all the subjects have been modified to avoid notifying
observers more than once.

ChangeManager has three responsibilities:

1. It maps a subject to its observers and provides an interface to maintain this mapping. This eliminates
the need for subjects to maintain references to their observers and vice versa.

2. It defines a particular update strategy.
3. It updates all dependent observers at the request of a subject.

The following diagram depicts a simple ChangeM anager-based implementation of the Observer pattern.
There are two specialized ChangeManagers. SimpleChangeManager is naive in that it always updates all
observers of each subject. In contrast, DAGChangeManager handles directed-acyclic graphs of dependencies
between subjects and their observers. A DAGChangeManager is preferable to a SimpleChangeM anager when
an observer observes more than one subject. In that case, a change in two or more subjects might cause
redundant updates. The DAGChangeManager ensures the observer receives just one update.

SimpleChangeM anager is fine when multiple updates aren't an issue.

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5gfs.htm (5 of 9) [21/08/2002 19:21:01]

Observer

Subject ChangelManager Observer

Aftach(Observer o] SUbJeCtS | oo cister{Subject, Observer) | CUSETVers Update{Subject!
Datach{Observar) e Uinregister/Sutyect, Observer)
Motify(} o chman Natifyf)

t:hrrmn—:-Nmtiiy?]:\

chman—=Register(this, '!;Y_\

Subject-Obsarder mapping

A

e

SimpleChangeManager DAGChangeManager
Registan Subject, Obsarver) Register[Subject, Observar)
Unregister Subject, Observer) Unregister| Subject. Observer)
Natify()} P Notity() ¢

i i

1 1

1 1
forall s in subjects = mark all observers to update

forall o in s.obsemvers update ail marked chearvers
o-=Lipdate(s)

ChangeManager is an instance of the Mediator (273) pattern. In general there is only one ChangeManager,
and it isknown globally. The Singleton (127) pattern would be useful here.

9. Combining the Subject and Observer classes. Class libraries written in languages that lack multiple
inheritance (like Smalltalk) generally don't define separate Subject and Observer classes but combine their
interfaces in one class. That |ets you define an object that acts as both a subject and an observer without
multiple inheritance. In Smalltalk, for example, the Subject and Observer interfaces are defined in the root
class Object, making them available to all classes.

v Sample Code

An abstract class defines the Observer interface:

cl ass Subj ect;

cl ass Cbserver {

public:

virtual ~ Qbserver();

virtual void Update(Subject* theChangedSubject) = 0;
pr ot ect ed:

oserver ();
1

This implementation supports multiple subjects for each observer. The subject passed to the Updat e operation lets
the observer determine which subject changed when it observes more than one.

Similarly, an abstract class defines the Subject interface:

cl ass Subject {
public:
virtual ~Subject();

virtual void Attach(Qoserver*);
virtual void Detach(Qoserver*);
virtual void Notify();

pr ot ect ed:
Subj ect () ;

private:

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5gfs.htm (6 of 9) [21/08/2002 19:21:01]

Observer

Li st <Cbserver*> * observers;

voi d Subject::Attach (Cbserver* 0) {
_observers->Append(0) ;

}

voi d Subject::Detach (Observer* o) {
_observers->Renpve(0);

}

void Subject::Notify () {
Li stlterator<Cbserver*> i (_observers);

for (i.First(); 'i.lsDone(); i.Next()) {
i.Currentltem()->Update(this);
}

}

Cl ockTi nmer isaconcrete subject for storing and maintaining the time of day. It notifies its observers every
second. Cl ockTi nmer provides the interface for retrieving individual time units such as the hour, minute, and
second.

class O ockTiner : public Subject {
publi c:
C ockTinmer();

virtual int GetHour();
virtual int GetMnute();
virtual int GetSecond();

void Tick();
b

TheTi ck operation gets called by an internal timer at regular intervals to provide an accurate time base. Ti ck
updatesthe C ockTi mer 'sinternal state and calls Not i f y to inform observers of the change:

void CockTinmer::Tick () {
/1 update internal tinme-keeping state
1.,
Notify();

}

Now we can defineaclassDi gi t al Cl ock that displays the time. It inherits its graphical functionality from a
W dget class provided by a user interface toolkit. The Observer interfaceis mixed into the Di gi t al O ock
interface by inheriting from Cbser ver .

class Digital Cock: public Wdget, public Observer {
public:

Di gital d ock(d ockTi nmer*);

virtual ~Digital Cock();

virtual void Updat e(Subject*);
/1 overrides Cbserver operation

virtual void Draw();
/1 overrides Wdget operation;
/1 defines howto draw the digital clock
private:
Cl ockTi ner* _subj ect;

}s

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5gfs.htm (7 of 9) [21/08/2002 19:21:01]

Observer

Digital dock::Digital dock (CockTinmer* s) {
_subject = s;
_subj ect->Attach(this);

}

DigitalClock:: Digital dock () {
_subj ect ->Det ach(this);
}

Before the Updat e operation draws the clock face, it checks to make sure the notifying subject is the clock's
subject:

voi d Digital dock:: Update (Subject* theChangedSubject) {
i f (theChangedSubject == _subject) {
Draw() ;
}
}

void Digital dock::Draw () {
/1 get the new values fromthe subject

i nt hour = _subject->CetHour();
int mnute = _subject->CGetM nute();
/1l etc.

/1 draw the digital clock
}

An Anal ogC ock class can be defined in the same way.

cl ass Anal ogd ock : public Wdget, public Observer {
public:

Anal ogC ock(C ockTi ner*);

virtual void Update(Subject*);

virtual void Draw();

11

H
The following code creates an Anal ogC ock andaDbDi gi t al O ock that always show the same time:

C ockTinmer* timer = new O ockTi ner;
Anal ogd ock* anal ogd ock = new Anal ogd ock(timer);
Digital dock* digital Clock = new Digital dock(tiner);

Whenever thet i ner ticks, the two clocks will be updated and will redisplay themselves appropriately.

* Known Uses

Thefirst and perhaps best-known example of the Observer pattern appearsin Smalltalk Model/View/Controller
(MVC), the user interface framework in the Smalltalk environment [KP88]. MV C's Modél class plays the role of

Subject, while View isthe base class for observers. Smalltalk, ET++ [WGM88], and the THINK class library
[Sym93b] provide a general dependency mechanism by putting Subject and Observer interfaces in the parent class
for al other classesin the system.

Other user interface toolkits that employ this pattern are InterViews [LV C89], the Andrew Toolkit [P+88], and
Unidraw [VL90]. InterViews defines Observer and Observable (for subjects) classes explicitly. Andrew calls them
"view" and "data object," respectively. Unidraw splits graphical editor objectsinto View (for observers) and Subject
parts.

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5gfs.htm (8 of 9) [21/08/2002 19:21:01]

Observer

v Related Patterns

Mediator (273): By encapsulating complex update semantics, the ChangeManager acts as mediator between subjects
and observers.

Singleton (127): The ChangeManager may use the Singleton pattern to make it unique and globally accessible.

&
p State

« Memento

)
=)
=
]

-
n
b

-
n
jak]

L |
—
(]
=
=
=
]
(=R
-
L
5
=
o
(i |
=
—4
*

g

-

1]

E=

—

1e]
-

—

1)

i

=4

(=]

L]

-

=

]

=}

{4k]

=4

)

=
L]

el

=

D

=

i

-

=

]

*

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5gfs.htm (9 of 9) [21/08/2002 19:21:01]

State

Case Study | Pattern Catalog | Conclusion

O State Object Behavioral

SEARCH

| Contents |ﬁ.|i|:|ntu Hﬂﬂdﬂ'5| Glossary | Notation | Foundation | Bibliography | Index | Pattern Map |
Intent

Also Known As
Motivation
Applicability
Structure

v Intent

Allow an object to alter its behavior when itsinternal state changes. The object will appear to change its

Parlicipants PSS
Collaborations

L v Also Known AS

Implementation

UL Objects for States
Known Uses

LU v \Votivation

Consider a class TCPConnection that represents a network connection. A TCPConnection object can be
in one of several different states: Established, Listening, Closed. When a TCPConnection object receives
requests from other objects, it responds differently depending on its current state. For example, the effect
of an Open request depends on whether the connection isin its Closed state or its Established state. The
State pattern describes how TCPConnection can exhibit different behavior in each state.

The key ideain this pattern is to introduce an abstract class called TCPState to represent the states of the
network connection. The TCPState class declares an interface common to all classes that represent
different operational states. Subclasses of TCPState implement state-specific behavior. For example, the
classes TCPEstablished and TCPClosed implement behavior particular to the Established and Closed
states of TCPConnection.

TCPConnection | 5 .| TCPstate
Openf) o--===-) Open()
Clasai) I Close()
Acknowledga() i Acknowladge()
i
I
state-=0pen() B | | |
TCPEstablished TCPListen TCPClosed
Openi) Open() Open(}
Close() Close() Close()
Acknowladge() Acknowladne() Acknowiedge()

The class TCPConnection maintains a state object (an instance of a subclass of TCPState) that represents
the current state of the TCP connection. The class TCPConnection delegates all state-specific requests to
this state object. TCPConnection uses its TCPState subclass instance to perform operations particular to
the state of the connection.

Whenever the connection changes state, the TCPConnection object changes the state object it uses. When
the connection goes from established to closed, for example, TCPConnection will replaceits
TCPEstablished instance with a TCPClosed instance.

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5hfs.htm (1 of 8) [21/08/2002 19:22:11]

javascript:loadApplet()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5h.htm#relatedpatterns
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5h.htm#knownuses
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5h.htm#samplecode
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5h.htm#implementation
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5h.htm#consequences
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5h.htm#collaborations
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5h.htm#participants
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5h.htm#structure
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5h.htm#applicability
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5h.htm#motivation
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5h.htm#alsoknownas
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5h.htm#intent
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/helpfs.htm
javascript:build()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/patcafs.htm

State

v Applicability
Use the State pattern in either of the following cases:

. An object's behavior depends on its state, and it must change its behavior at run-time depending
on that state.

. Operations have large, multipart conditional statements that depend on the object's state. This
state is usually represented by one or more enumerated constants. Often, several operations will
contain this same conditional structure. The State pattern puts each branch of the conditional in a
separate class. Thislets you treat the object's state as an object in its own right that can vary
independently from other objects.

v Structure

Context .;:;f' fate p State
Request() o Hanale(}
|
= A
state-=Handle() L |
ConcreteStateA ConcreteStateB
Handle() Handie)

v Participants

. Context (TCPConnection)

o definesthe interface of interest to clients.

o maintains an instance of a ConcreteState subclass that defines the current state.
. State (TCPState)

o defines an interface for encapsulating the behavior associated with a particular state of the
Context.

. ConcreteState subclasses (TCPEstablished, TCPListen, TCPClosed)

o each subclass implements a behavior associated with a state of the Context.

v Collaborations

. Context delegates state-specific requests to the current ConcreteState object.

. A context may passitself as an argument to the State object handling the request. Thislets the
State object access the context if necessary.

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5hfs.htm (2 of 8) [21/08/2002 19:22:11]

State

. Context isthe primary interface for clients. Clients can configure a context with State objects.
Once a context is configured, its clients don't have to deal with the State objects directly.

. Either Context or the ConcreteState subclasses can decide which state succeeds another and under
what circumstances.

¥ Consequences

The State pattern has the following consequences:

1. It localizes state-specific behavior and partitions behavior for different states. The State pattern
puts al behavior associated with a particular state into one object. Because all state-specific code
livesin a State subclass, new states and transitions can be added easily by defining new
subclasses.

An adternative is to use data values to define internal states and have Context operations check the
data explicitly. But then we'd have look-alike conditional or case statements scattered throughout
Context's implementation. Adding a new state could require changing several operations, which
complicates maintenance.

The State pattern avoids this problem but might introduce another, because the pattern distributes
behavior for different states across several State subclasses. This increases the number of classes
and is less compact than asingle class. But such distribution is actually good if there are many
states, which would otherwise necessitate large conditional statements.

Like long procedures, large conditional statements are undesirable. They're monolithic and tend to
make the code less explicit, which in turn makes them difficult to modify and extend. The State
pattern offers a better way to structure state-specific code. The logic that determines the state
transitions doesn't reside in monolithici f or swi t ch statements but instead is partitioned
between the State subclasses. Encapsulating each state transition and action in a class elevates the
idea of an execution state to full object status. That imposes structure on the code and makes its
intent clearer.

2. It makes state transitions explicit. When an object definesits current state solely in terms of
internal data values, its state transitions have no explicit representation; they only show up as
assignments to some variables. Introducing separate objects for different states makes the
transitions more explicit. Also, State objects can protect the Context from inconsistent internal
states, because state transitions are atomic from the Context's perspective—they happen by
rebinding one variable (the Context's State object variable), not several [dCLF93].

3. State objects can be shared. If State objects have no instance variables—that is, the state they
represent is encoded entirely in their type—then contexts can share a State object. When states are
shared in thisway, they are essentially flyweights (see Flyweight (195)) with no intrinsic state,
only behavior.

v Implementation

The State pattern raises a variety of implementation issues:

1. Who defines the state transitions? The State pattern does not specify which participant defines the
criteriafor state transitions. If the criteria are fixed, then they can be implemented entirely in the
Context. It is generally more flexible and appropriate, however, to let the State subclasses
themselves specify their successor state and when to make the transition. This requires adding an

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5hfs.htm (3 of 8) [21/08/2002 19:22:11]

State

interface to the Context that lets State objects set the Context's current state explicitly.

Decentralizing the transition logic in this way makesit easy to modify or extend the logic by
defining new State subclasses. A disadvantage of decentralization is that one State subclass will
have knowledge of at least one other, which introduces implementation dependencies between
subclasses.

2. Atable-based alternative. In C++ Programming Style [Car92], Cargill describes another way to
impose structure on state-driven code: He uses tables to map inputs to state transitions. For each
state, atable maps every possible input to a succeeding state. In effect, this approach converts
conditional code (and virtual functions, in the case of the State pattern) into atable look-up.

The main advantage of tablesistheir regularity: Y ou can change the transition criteria by
modifying data instead of changing program code. There are some disadvantages, however:

o A tablelook-up is often less efficient than a (virtual) function call.

o Putting transition logic into a uniform, tabular format makes the transition criterialess
explicit and therefore harder to understand.

o It'susualy difficult to add actions to accompany the state transitions. The table-driven
approach captures the states and their transitions, but it must be augmented to perform
arbitrary computation on each transition.

The key difference between table-driven state machines and the State pattern can be summed up
like this: The State pattern models state-specific behavior, whereas the table-driven approach
focuses on defining state transitions.

3. Creating and destroying State objects. A common implementation trade-off worth considering is
whether (1) to create State objects only when they are needed and destroy them thereafter versus
(2) creating them ahead of time and never destroying them.

Thefirst choice is preferable when the states that will be entered aren't known at run-time, and
contexts change state infrequently. This approach avoids creating objects that won't be used,
which isimportant if the State objects store alot of information. The second approach is better
when state changes occur rapidly, in which case you want to avoid destroying states, because they
may be needed again shortly. Instantiation costs are paid once up-front, and there are no
destruction costs at al. This approach might be inconvenient, though, because the Context must
keep references to all states that might be entered.

4. Using dynamic inheritance. Changing the behavior for a particular request could be accomplished
by changing the object's class at run-time, but thisis not possible in most object-oriented
programming languages. Exceptions include Self [US87] and other delegation-based languages
that provide such a mechanism and hence support the State pattern directly. Objectsin Self can
delegate operations to other objects to achieve aform of dynamic inheritance. Changing the
delegation target at run-time effectively changes the inheritance structure. This mechanism lets
objects change their behavior and amounts to changing their class.

v Sample Code

The following example gives the C++ code for the TCP connection example described in the Motivation
section. This example isasimplified version of the TCP protocol; it doesn't describe the complete

protocol or all the states of TCP connections.8

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5hfs.htm (4 of 8) [21/08/2002 19:22:11]

State

First, we define the class TCPConnect i on, which provides an interface for transmitting data and
handles requests to change state.

cl ass TCPCct et St ream
cl ass TCPSt at e;

cl ass TCPConnection {
publi c:
TCPConnection();

voi d ActiveQpen();
voi d Passi veQpen();
void C ose();

void Send();
voi d Acknow edge();
voi d Synchroni ze();

voi d ProcessCct et (TCPCct et Streant) ;
private:

friend class TCPSt at e;

voi d ChangeSt at e(TCPSt at e*) ;
private:

TCPSt at e* _st at e;

H

TCPConnect i on keeps an instance of the TCPSt at e classinthe _st at e member variable. The
class TCPSt at e duplicates the state-changing interface of TCPConnect i on. Each TCPSt at e
operation takesa TCPConnect i on instance as a parameter, letting TCPSt at e access datafrom
TCPConnect i on and change the connection's state.

class TCPState {

publi c:
virtual void Transmt(TCPConnection*, TCPCctet Streant);
virtual void ActiveOpen(TCPConnection*);
virtual void PassiveQpen(TCPConnecti on*);
virtual void C ose(TCPConnection*);
virtual void Synchroni ze(TCPConnecti on*);
virtual void Acknow edge(TCPConnecti on*);
virtual void Send(TCPConnection*);

pr ot ect ed:
voi d ChangeSt at e(TCPConnecti on*, TCPSt ate*);

s

TCPConnect i on delegates all state-specific requeststo its TCPSt at e instance _st at e.
TCPConnect i on also provides an operation for changing this variable to anew TCPSt at e. The
constructor for TCPConnect i on initializes the object to the TCPCl osed state (defined | ater).

TCPConnecti on: : TCPConnection () {
_State = TCPC osed: : I nstance();

}

voi d TCPConnecti on:: ChangeState (TCPState* s) {
_state = s;

}

voi d TCPConnection:: ActiveQOpen () {

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5hfs.htm (5 of 8) [21/08/2002 19:22:11]

State

_State->ActiveQOpen(this);
}

voi d TCPConnecti on:: PassiveQpen () {
_state->Passi veQpen(this);

}

voi d TCPConnection::Cose () {
_state->Cl ose(this);

}

voi d TCPConnecti on:: Acknow edge () {
_stat e->Acknow edge(this);

}

voi d TCPConnecti on:: Synchroni ze () {
_State->Synchroni ze(this);
}

TCPSt at e implements default behavior for all requests delegated to it. It can aso change the state of a
TCPConnect i on with the ChangeSt at e operation. TCPSt at e is declared afriend of
TCPConnect i on to giveit privileged access to this operation.

void TCPState:: Transmt (TCPConnection*, TCPCctetStreant) { }
voi d TCPSt ate: : ActiveQpen (TCPConnection*) { }

voi d TCPSt at e: : Passi veOpen (TCPConnection*) { }

void TCPState:: d ose (TCPConnection*) { }

voi d TCPSt at e: : Synchroni ze (TCPConnection*) { }

voi d TCPSt at e: : ChangeSt ate (TCPConnection* t, TCPState* s) {
t - >ChangeSt at e(s) ;
}

Subclasses of TCPSt at e implement state-specific behavior. A TCP connection can be in many states:
Established, Listening, Closed, etc., and there's a subclass of TCPSt at e for each state. We'll discuss
three subclasses in detail: TCPEst abl i shed, TCPLi st en, and TCPCl osed.

cl ass TCPEst ablished : public TCPState {
publi c:
static TCPState* |nstance();

virtual void Transmt(TCPConnection*, TCPCctetStreant);
virtual void d ose(TCPConnection*);

i

class TCPListen : public TCPState {

publi c:
static TCPState* |nstance();
virtual void Send(TCPConnection*);
I

b

cl ass TCPCl osed : public TCPState {

publi c:

static TCPState* |Instance();

virtual void ActiveOpen(TCPConnection*);

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5hfs.htm (6 of 8) [21/08/2002 19:22:11]

State

virtual void PassiveQpen(TCPConnecti on*);
/1

b

TCPSt at e subclasses maintain no local state, so they can be shared, and only one instance of each is
required. The unique instance of each TCPSt at e subclassis obtained by the static | nst ance
operation.®

Each TCPSt at e subclass implements state-specific behavior for valid requestsin the state:

voi d TCPC osed: : Acti veOpen (TCPConnection* t) {
/'l send SYN, receive SYN, ACK, etc.

ChangeSt at e(t, TCPEstablished::Instance());
}

voi d TCPC osed: : Passi veQpen (TCPConnection* t) {
ChangeSt ate(t, TCPListen::Ilnstance());
}

voi d TCPEst abl i shed: : C ose (TCPConnection* t) {
/'l send FIN, receive ACK of FIN

ChangeState(t, TCPListen::Instance());

}
voi d TCPEst abl i shed:: Transmit (
TCPConnection* t, TCPCctet Streant o
) {
t->ProcessCctet (0);
}

voi d TCPLi sten:: Send (TCPConnection* t) {
/1 send SYN, receive SYN, ACK, etc.

ChangeSt at e(t, TCPEstablished::Instance());
}

After performing state-specific work, these operations call the Change St at e operation to change the
state of the TCPConnect i on. TCPConnect i on itself doesn't know athing about the TCP connection
protocol; it'sthe TCPSt at e subclasses that define each state transition and action in TCP.

* Known Uses

Johnson and Zweig [JZ91] characterize the State pattern and its application to TCP connection protocols.

Most popular interactive drawing programs provide "tools" for performing operations by direct
manipulation. For example, aline-drawing tool lets a user click and drag to create anew line. A selection
tool lets the user select shapes. There's usually a palette of such tools to choose from. The user thinks of
this activity as picking up atool and wielding it, but in reality the editor's behavior changes with the
current tool: When a drawing tool is active we create shapes, when the selection tool is active we select
shapes; and so forth. We can use the State pattern to change the editor's behavior depending on the
current tool.

We can define an abstract Tool class from which to define subclasses that implement tool-specific
behavior. The drawing editor maintains a current Tool object and delegates requeststo it. It replaces this

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5hfs.htm (7 of 8) [21/08/2002 19:22:11]

State

object when the user chooses a new tool, causing the behavior of the drawing editor to change
accordingly.

Thistechniqueis used in both the HotDraw [Joh92] and Unidraw [VL90] drawing editor frameworks. It
allows clients to define new kinds of tools easily. In HotDraw, the DrawingController class forwards the
requests to the current Tool object. In Unidraw, the corresponding classes are Viewer and Tool. The
following class diagram sketches the Tool and DrawingController interfaces:

cuerrentT ool

DrawingController |, m Tool
MousePrassed]) HandleMousePress])
Processkeyboard() HandiehouseReleasel)
Initializel) HandieCharacter)
GefCursan)
Activate|)
CreationTool SelectionTool TextTool

Coplien's Envelope-Letter idiom [Cop92] isrelated to State. Envelope-Letter is atechnique for changing

an object's class at run-time. The State pattern is more specific, focusing on how to deal with an object
whose behavior depends on its state.

v Related Patterns

The Flyweight (195) pattern explains when and how State objects can be shared.

State objects are often Singletons (127).

&

p Strategy
4 Observer

8This exampleis based on the TCP connection protocol described by Lynch and Rose [LR93].

9This makes each TCPSt at e subclass a Singleton (see Singleton (127)).

i
Abstract Factory » Adapter » Bridge = Builder = Chain of Responsibility * Command « Composite »

Decorator * Facade = Factory Method = Flyweight = Imterpreter = lterator = Mediator = Memento »
Observer * Prototype « Proxy + Singleton = State + Strategy *+ Template Method » Visitor

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5hfs.htm (8 of 8) [21/08/2002 19:22:11]

Strategy

©

SEARCH

Intent

Also Known As
Motivation
Applicability
Structure
Participants
Collaborations
Consequences
Implementation
Sample Code
Known Uses
Related Patterns

Pattern Catalog | Conclusion

Strategy Object Behavioral

| Contents |ﬁ.|i|:|ntu Hﬂﬂdﬂ'5| Glossary | Notation | Foundation | Bibliography | Index | Pattern Map |

Case Study

v Intent

Define afamily of algorithms, encapsulate each one, and make them interchangeable. Strategy lets the
algorithm vary independently from clients that use it.

v Also Known AS

Policy

v Motivation

Many algorithms exist for breaking a stream of text into lines. Hard-wiring al such algorithmsinto the
classes that require them isn't desirable for several reasons:

. Clientsthat need linebreaking get more complex if they include the linebreaking code. That
makes clients bigger and harder to maintain, especially if they support multiple linebreaking
algorithms.

. Different agorithms will be appropriate at different times. We don't want to support multiple
linebreaking algorithms if we don't use them all.

. It'sdifficult to add new algorithms and vary existing ones when linebreaking is an integral part of
aclient.

We can avoid these problems by defining classes that encapsul ate different linebreaking algorithms. An
algorithm that's encapsulated in thisway is called a strategy.

Composition - COMPOSIor ™ Composilor
Traverse() Compose|)
Hepair) o /‘K
! | | |
I SimpleCompositor TeXCompaositor ArrayCompositor
compositor-=Compose()
Composal) Composaf) Composal)

Suppose a Composition class is responsible for maintaining and updating the linebreaks of text displayed
in atext viewer. Linebreaking strategies aren't implemented by the class Composition. Instead, they are
implemented separately by subclasses of the abstract Compositor class. Compositor subclasses
implement different strategies:

. SimpleCompositor implements a simple strategy that determines linebreaks one at atime.

. TeXCompositor implements the TeX agorithm for finding linebreaks. This strategy triesto

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5ifs.htm (1 of 8) [21/08/2002 19:22:57]

javascript:loadApplet()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5i.htm#relatedpatterns
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5i.htm#knownuses
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5i.htm#samplecode
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5i.htm#implementation
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5i.htm#consequences
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5i.htm#collaborations
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5i.htm#participants
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5i.htm#structure
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5i.htm#applicability
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5i.htm#motivation
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5i.htm#alsoknownas
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5i.htm#intent
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/helpfs.htm
javascript:build()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/patcafs.htm

Strategy

optimize linebreaks globally, that is, one paragraph at atime.

. ArrayCompositor implements a strategy that selects breaks so that each row has a fixed number
of items. It's useful for breaking a collection of icons into rows, for example.

A Composition maintains areference to a Compositor object. Whenever a Composition reformats its
text, it forwards this responsibility to its Compositor object. The client of Composition specifies which
Compositor should be used by installing the Compositor it desires into the Composition.

v Applicability
Use the Strategy pattern when

. many related classes differ only in their behavior. Strategies provide away to configure aclass
with one of many behaviors.

. you need different variants of an algorithm. For example, you might define algorithms reflecting
different space/time trade-offs. Strategies can be used when these variants are implemented as a
class hierarchy of algorithms [HO87].

. an agorithm uses data that clients shouldn't know about. Use the Strategy pattern to avoid
exposing complex, algorithm-specific data structures.

. aclass defines many behaviors, and these appear as multiple conditional statementsin its
operations. Instead of many conditionals, move related conditional branches into their own
Strategy class.

v Structure

Context {;Etratew m Strategy

Contextinterface!) Algorithminterface()
ConcrateStratoagqyA ConcretaStralegyB ConcreteStrategyC
Algorithminterfacsl) Algorithminierface() Algorithminterfaced)

v Participants

. Strategy (Compositor)

o declares an interface common to all supported algorithms. Context uses this interface to
call the algorithm defined by a ConcreteStrategy.

. ConcreteStrategy (SimpleCompositor, TeX Compositor, ArrayCompositor)

o implements the algorithm using the Strategy interface.

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5ifs.htm (2 of 8) [21/08/2002 19:22:57]

Strategy

. Context (Composition)
o isconfigured with a ConcreteStrategy object.
o maintains areference to a Strategy object.

o may define an interface that |ets Strategy access its data.

v Collaborations

. Strategy and Context interact to implement the chosen algorithm. A context may pass all data
required by the algorithm to the strategy when the algorithm is called. Alternatively, the context
can pass itself as an argument to Strategy operations. That lets the strategy call back on the
context as required.

. A context forwards requests from its clients to its strategy. Clients usually create and pass a
ConcreteStrategy object to the context; thereafter, clients interact with the context exclusively.
Thereis often afamily of ConcreteStrategy classes for a client to choose from.

¥ Consequences

The Strategy pattern has the following benefits and drawbacks:

1. Families of related algorithms. Hierarchies of Strategy classes define afamily of algorithms or
behaviors for contexts to reuse. Inheritance can help factor out common functionality of the
algorithms.

2. An alternative to subclassing. Inheritance offers another way to support a variety of algorithms or
behaviors. Y ou can subclass a Context class directly to giveit different behaviors. But this hard-
wires the behavior into Context. It mixes the algorithm implementation with Context's, making
Context harder to understand, maintain, and extend. And you can't vary the algorithm
dynamically. Y ou wind up with many related classes whose only difference is the algorithm or
behavior they employ. Encapsulating the algorithm in separate Strategy classes lets you vary the
algorithm independently of its context, making it easier to switch, understand, and extend.

3. Strategies eiminate conditional statements. The Strategy pattern offers an alternative to
conditional statements for selecting desired behavior. When different behaviors are lumped into
one class, it's hard to avoid using conditional statements to select the right behavior.
Encapsulating the behavior in separate Strategy classes eliminates these conditional statements.

For example, without strategies, the code for breaking text into lines could ook like

voi d Conposition::Repair () {

switch (_breakingStrategy) {

case SinpleStrategy:
ConposeW t hSi npl eConpositor();
br eak;

case TeXStrategy:
ConmposeW t hTeXConposi tor();
br eak;

I

}

/1l merge results with existing conposition, if necessary

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5ifs.htm (3 of 8) [21/08/2002 19:22:57]

Strategy

}

The Strategy pattern eliminates this case statement by delegating the linebreaking task to a
Strategy object:

voi d Conposition::Repair () {
_conposi t or - >Conpose();
/1l merge results with existing conposition, if necessary

}

Code containing many conditional statements often indicates the need to apply the Strategy
pattern.

4. A choice of implementations. Strategies can provide different implementations of the same
behavior. The client can choose among strategies with different time and space trade-offs.

5. Clients must be aware of different Srategies. The pattern has a potential drawback in that a client
must understand how Strategies differ before it can select the appropriate one. Clients might be
exposed to implementation issues. Therefore you should use the Strategy pattern only when the
variation in behavior is relevant to clients.

6. Communication overhead between Strategy and Context. The Strategy interface is shared by all
ConcreteStrategy classes whether the algorithms they implement are trivial or complex. Hence it's
likely that some ConcreteStrategies won't use all the information passed to them through this
interface; simple ConcreteStrategies may use none of it! That means there will be times when the
context creates and initializes parameters that never get used. If thisis an issue, then you'll need
tighter coupling between Strategy and Context.

7. Increased number of objects. Strategies increase the number of objectsin an application.
Sometimes you can reduce this overhead by implementing strategies as statel ess objects that
contexts can share. Any residual state is maintained by the context, which passesit in each request
to the Strategy object. Shared strategies should not maintain state across invocations. The
Flyweight (195) pattern describes this approach in more detail.

v Implementation

Consider the following implementation issues:

1. Defining the Strategy and Context interfaces. The Strategy and Context interfaces must give a
ConcreteStrategy efficient access to any data it needs from a context, and vice versa.

One approach is to have Context pass data in parameters to Strategy operations—in other words,
take the data to the strategy. This keeps Strategy and Context decoupled. On the other hand,
Context might pass data the Strategy doesn't need.

Another technique has a context pass itself as an argument, and the strategy requests data from the
context explicitly. Alternatively, the strategy can store areference to its context, eliminating the
need to pass anything at all. Either way, the strategy can request exactly what it needs. But now
Context must define a more elaborate interface to its data, which couples Strategy and Context
more closely.

The needs of the particular algorithm and its data requirements will determine the best technique.

2. Srategies as template parameters. In C++ templates can be used to configure a class with a

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5ifs.htm (4 of 8) [21/08/2002 19:22:57]

Strategy

strategy. Thistechnique is only applicableif (1) the Strategy can be selected at compile-time, and
(2) it does not have to be changed at run-time. In this case, the class to be configured (e.g.,
Cont ext) isdefined as atemplate classthat hasa St r at egy class as a parameter:

tenpl ate <cl ass AStrat egy>

cl ass Context {
void Operation() { theStrategy. DoAl gorithm(); }
I .

private:
AStrategy theStrategy;

3
The classisthen configured with a St r at egy class when it's instantiated:

class MyStrategy {
publ i c:

voi d DoAl gorithm();
3

Cont ext <MySt r at egy> aCont ext ;

With templates, there's no need to define an abstract class that defines the interface to the
Strategy. Using St r at egy as atemplate parameter also letsyou bind a St r at egy toits
Cont ext statically, which can increase efficiency.

3. Making Strategy objects optional. The Context class may be simplified if it's meaningful not to
have a Strategy object. Context checks to see if it has a Strategy object before accessing it. If there
is one, then Context usesit normally. If thereisn't a strategy, then Context carries out default
behavior. The benefit of this approach is that clients don't have to deal with Strategy objects at all
unless they don't like the default behavior.

v Sample Code

Well give the high-level code for the Motivation example, which is based on the implementation of
Composition and Compositor classesin InterViews [LCI+92].

The Conposi ti on class maintains a collection of Conmponent instances, which represent text and
graphical elementsin adocument. A composition arranges component objects into lines using an
instance of a Conposi t or subclass, which encapsulates a linebreaking strategy. Each component has
an associated natural size, stretchability, and shrinkability. The stretchability defines how much the
component can grow beyond its natural size; shrinkability is how much it can shrink. The composition
passes these values to a compositor, which uses them to determine the best |ocation for linebreaks.

cl ass Conposition {

publi c:
Conposi tion(Conpositor*);
void Repair();

private:
Composi tor* _conpositor;
Conponent * _conponents; /1 the list of conponents
i nt _conponent Count ; /1 the nunber of conponents
int _lineWdth; /1l the Conposition's line width
int* _lineBreaks; /1 the position of |inebreaks
/1l in conponents
int _|ineCount; /1 the nunber of I|ines

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5ifs.htm (5 of 8) [21/08/2002 19:22:57]

Strategy

b

When a new layout is required, the composition asks its compositor to determine where to place
linebreaks. The composition passes the compositor three arrays that define natural sizes, stretchabilities,
and shrinkabilities of the components. It also passes the number of components, how wide the lineis, and
an array that the compositor fills with the position of each linebreak. The compositor returns the number
of calculated breaks.

The Conposi t or interface |lets the composition pass the compositor all the information it needs. Thisis
an example of "taking the data to the strategy":

cl ass Conpositor {
publi c:
virtual int Conpose(
Coord natural[], Coord stretch[], Coord shrink[],
i nt conmponent Count, int |ineWdth, int breaks[]
) =0
pr ot ect ed:
Composi tor();
1

Note that Conposi t or isan abstract class. Concrete subclasses define specific linebreaking strategies.

The composition callsits compositor in its Repai r operation. Repai r first initializes arrays with the
natural size, stretchability, and shrinkability of each component (the details of which we omit for
brevity). Then it calls on the compositor to obtain the linebreaks and finally lays out the components
according to the breaks (also omitted):

void Conposition::Repair () {
Coord* natural;
Coord* stretchability;
Coord* shrinkability;
i nt conponent Count ;
int* breaks;

/'l prepare the arrays with the desired conponent sizes
/1

/1 determ ne where the breaks are:
i nt breakCount;
breakCount = _conpositor->Conpose(
natural, stretchability, shrinkability,

conmponent Count, _|ineWdth, breaks
);
/1 lay out conponents according to breaks
11

}

Now let'slook at the Conposi t or subclasses. Si npl eConposi t or examines componentsalineat a
time to determine where breaks should go:

cl ass Sinpl eConpositor : public Conpositor {
publi c:
Si npl eConpositor();

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5ifs.htm (6 of 8) [21/08/2002 19:22:57]

Strategy

virtual int Conpose(
Coord natural[], Coord stretch[], Coord shrink[],
i nt conmponent Count, int lineWdth, int breaks[]

TeXConposi t or usesamore global strategy. It examines a paragraph at atime, taking into account
the components' size and stretchability. It also tries to give an even "color" to the paragraph by
minimizing the whitespace between components.

cl ass TeXConpositor : public Conpositor {
publi c:
TeXComnpositor();

virtual int Conpose(
Coord natural[], Coord stretch[], Coord shrink[],
i nt conmponent Count, int [ineWdth, int breaks[]

~
~ -

b
ArrayConposi t or breaksthe componentsinto lines at regular intervals.

cl ass ArrayConpositor : public Conpositor {
publi c:
ArrayConpositor(int interval);

virtual int Conpose(
Coord natural[], Coord stretch[], Coord shrink[],
i nt conmponent Count, int lineWdth, int breaks[]

These classes don't use al the information passed in Conpose. Si npl eConposi t or ignoresthe
stretchability of the components, taking only their natural widths into account. Te XConposi t or uses
all the information passed to it, whereas Ar r ay Conposi t or ignores everything.

To instantiate Conposi t i on, you passit the compositor you want to use:

Conposi tion* quick = new Conposition(new Sinpl eConpositor);
Conposition* slick = new Conposition(new TeXConpositor);
Composition* iconic = new Conposition(new ArrayConpositor(100));

Conposi t or 'sinterface is carefully designed to support all layout algorithms that subclasses might
implement. Y ou don't want to have to change this interface with every new subclass, because that will
require changing existing subclasses. In general, the Strategy and Context interfaces determine how well
the pattern achievesitsintent.

* Known Uses

Both ET++ [WGM88] and InterViews use strategies to encapsulate different linebreaking algorithms as
we've described.

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5ifs.htm (7 of 8) [21/08/2002 19:22:57]

Strategy

Inthe RTL System for compiler code optimization [JML92], strategies define different register allocation

schemes (RegisterAllocator) and instruction set scheduling policies (RISCscheduler, CI SCscheduler).
This provides flexibility in targeting the optimizer for different machine architectures.

The ET++SwapsManager calculation engine framework computes prices for different financial
instruments [EG92]. Its key abstractions are Instrument and YieldCurve. Different instruments are
implemented as subclasses of Instrument. YieldCurve calculates discount factors, which determine the
present value of future cash flows. Both of these classes delegate some behavior to Strategy objects. The
framework provides afamily of ConcreteStrategy classes for generating cash flows, valuing swaps, and
calculating discount factors. Y ou can create new calculation engines by configuring Instrument and
YieldCurve with the different ConcreteStrategy objects. This approach supports mixing and matching
existing Strategy implementations as well as defining new ones.

The Booch components [BV 90] use strategies as template arguments. The Booch collection classes
support three different kinds of memory allocation strategies: managed (allocation out of a pool),
controlled (allocations/deallocations are protected by locks), and unmanaged (the normal memory
allocator). These strategies are passed as template arguments to a collection class when it's instantiated.
For example, an UnboundedCollection that uses the unmanaged strategy isinstantiated as
UnboundedCaol | ect i on.

RApp isasystem for integrated circuit layout [GA89, AG90]. RApp must lay out and route wires that

connect subsystems on the circuit. Routing algorithms in RApp are defined as subclasses of an abstract
Router class. Router is a Strategy class.

Borland's ObjectWindows [Bor94] uses strategies in dialogs boxes to ensure that the user entersvalid

data. For example, numbers might have to be in a certain range, and a numeric entry field should accept
only digits. Validating that a string is correct can require atable |ook-up.

ObjectWindows uses Validator objects to encapsul ate validation strategies. Validators are examples of
Strategy objects. Data entry fields delegate the validation strategy to an optional Validator object. The
client attaches avalidator to afield if validation is required (an example of an optiona strategy). When
the dialog is closed, the entry fields ask their validators to validate the data. The class library provides
validators for common cases, such as a RangeValidator for numbers. New client-specific validation
strategies can be defined easily by subclassing the Validator class.

v Related Patterns

Flyweight (195): Strategy objects often make good flyweights.

Y
p 1emplate Method
4 State

Abstract Factory = Adapter = Bridge = Builder = Chain of Responsibility = Command « Composite »
Decorator * Facade » Factory Method * Flyweight = Imterpreter » lterator = Mediator = Memento »
Observer = Prototype + Proxy « Singleton = State + Strategy = Template Method = Visitor

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5ifs.htm (8 of 8) [21/08/2002 19:22:57]

Template Method

©

SEARCH

Intent
Mativation
Applicability
Structure
Participants
Collaborations
Consequences
Implementation
Sample Code
Known Uses
Related Patterns

Pattern Catalog | Conclusion

Class Behavioral

| Contents |ﬁ.|i|:|ntu Hﬂﬂdﬂ'5| Glossary | Notation | Foundation | Bibliography | Index | Pattern Map |

Case Study

Template

v Intent

Define the skeleton of an algorithm in an operation, deferring some steps to subclasses. Template
Method lets subclasses redefine certain steps of an algorithm without changing the algorithm's structure.

* Motivation

Consider an application framework that provides Application and Document classes. The Application
classisresponsible for opening existing documents stored in an external format, such asafile. A
Document object represents the information in a document onceit's read from thefile.

Applications built with the framework can subclass Application and Document to suit specific needs. For
example, adrawing application defines DrawA pplication and DrawDocument subclasses; a spreadsheet
application defines SpreadsheetA pplication and SpreadsheetDocument subclasses.

—l.-l—cm::-
Document Application
Savel} AddDocument()
Dpen() Opanlocument)
Closeal} DoCreateDocument)
Doftead]) CanCpenDocumentii
AboutToOpenDocument’)
MyDocument | ----------1 MyApplication
DoRead(} DoCreateDocument() & 4------1 return new MyDocument =

CanCpenDocumeant()
AboutToOpenDocument()

The abstract Application class defines the algorithm for opening and reading a document in its
OpenDocument operation:

voi d Application::OQpenDocunent (const char* nane) {
i f (!CanCpenDocunent (nane)) {
/'l cannot handl e this docunent
return;

}

Docunent * doc = DoCreat eDocunent () ;

if (doc) {
_docs->AddDocunent (doc) ;
About ToOpenDocunent (doc) ;
doc- >Open();
doc- >DoRead() ;

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5jfs.htm (1 of 5) [21/08/2002 19:23:20]

javascript:loadApplet()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5j.htm#relatedpatterns
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5j.htm#knownuses
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5j.htm#samplecode
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5j.htm#implementation
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5j.htm#consequences
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5j.htm#collaborations
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5j.htm#participants
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5j.htm#structure
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5j.htm#applicability
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5j.htm#motivation
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5j.htm#intent
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/helpfs.htm
javascript:build()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/patcafs.htm

Template Method

}

OpenDocument defines each step for opening a document. It checks if the document can be opened,
creates the application-specific Document object, adds it to its set of documents, and reads the Document
from afile.

We call OpenDocument atemplate method. A template method defines an algorithm in terms of
abstract operations that subclasses override to provide concrete behavior. Application subclasses define
the steps of the algorithm that check if the document can be opened (CanOpenDocument) and that create
the Document (DoCreateDocument). Document classes define the step that reads the document
(DoRead). The template method also defines an operation that |lets Application subclasses know when
the document is about to be opened (AboutToOpenDocument), in case they care.

By defining some of the steps of an algorithm using abstract operations, the template method fixes their
ordering, but it lets Application and Document subclasses vary those steps to suit their needs.

v Applicability
The Template Method pattern should be used

. toimplement the invariant parts of an algorithm once and leave it up to subclasses to implement
the behavior that can vary.

. when common behavior among subclasses should be factored and localized in acommon class to
avoid code duplication. Thisis agood example of "refactoring to generalize" as described by
Opdyke and Johnson [0J93]. Y ou first identify the differencesin the existing code and then
separate the differences into new operations. Finally, you replace the differing code with a
template method that calls one of these new operations.

. to control subclasses extensions. Y ou can define a template method that calls "hook™ operations
(see Consequences) at specific points, thereby permitting extensions only at those points.

v Structure

AbstractClass

Tl

TemplateMethod{} &=-p==-==-=-====-=- F-’-rin'li[iumjpa rationi{)
PrimitiveQperation 1) _ .
PrimitiveQperalion2y) PrimitiveCperalion2()

;

ConcreteClass

PrimitiveOperationi()
PrimitiveCperation2()

¥ Participants

. AbstractClass (Application)

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5jfs.htm (2 of 5) [21/08/2002 19:23:20]

Template Method

o defines abstract primitive oper ations that concrete subclasses define to implement steps
of an algorithm.

o implements atemplate method defining the skeleton of an algorithm. The template method
calls primitive operations as well as operations defined in AbstractClass or those of other
objects.

. ConcreteClass (MyApplication)

o implements the primitive operations to carry out subclass-specific steps of the algorithm.

v Collaborations

. ConcreteClassrelies on AbstractClass to implement the invariant steps of the algorithm.

v Consequences

Template methods are a fundamental technique for code reuse. They are particularly important in class
libraries, because they are the means for factoring out common behavior in library classes.

Template methods lead to an inverted control structure that's sometimes referred to as "the Hollywood
principle,” that is, "Don't call us, we'll call you" [Swe85]. Thisrefers to how a parent class cals the
operations of a subclass and not the other way around.
Template methods call the following kinds of operations:

. concrete operations (either on the ConcreteClass or on client classes);

. concrete AbstractClass operations (i.e., operations that are generally useful to subclasses);

. primitive operations (i.e., abstract operations);

. factory methods (see Factory Method (107)); and

. hook operations, which provide default behavior that subclasses can extend if necessary. A hook
operation often does nothing by default.

It's important for template methods to specify which operations are hooks (may be overridden) and which
are abstract operations (must be overridden). To reuse an abstract class effectively, subclass writers must
understand which operations are designed for overriding.

A subclass can extend a parent class operation's behavior by overriding the operation and calling the
parent operation explicitly:

voi d Derivedd ass:: Qperation () {
/1 Derivedd ass extended behavi or
Par ent Cl ass: : Operation();

}

Unfortunately, it's easy to forget to call the inherited operation. We can transform such an operation into
atemplate method to give the parent control over how subclasses extend it. Theideaisto call a hook
operation from a template method in the parent class. Then subclasses can then override this hook
operation:

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5jfs.htm (3 of 5) [21/08/2002 19:23:20]

Template Method

voi d Parentd ass:: Operation () {
/1 Parent d ass behavi or
HookOper ati on();

}

HookQper at i on does nothing in Par ent Cl ass:
voi d Parent C ass:: HookOperation () { }
Subclasses override Hook Oper at i on to extend its behavior:

voi d Derivedd ass:: HookQperation () {
/1 derived class extension
}

v Implementation

Three implementation issues are worth noting:

1. Using C++ access control. In C++, the primitive operations that a template method calls can be
declared protected members. This ensures that they are only called by the template method.
Primitive operations that must be overridden are declared pure virtual. The template method itself
should not be overridden; therefore you can make the template method a nonvirtual member
function.

2. Minimizing primitive operations. An important goal in designing template methods isto minimize
the number of primitive operations that a subclass must override to flesh out the algorithm. The
more operations that need overriding, the more tedious things get for clients.

3. Naming conventions. Y ou can identify the operations that should be overridden by adding a prefix
to their names. For example, the MacApp framework for Macintosh applications [App89] prefixes
template method names with "Do-": "DoCreateDocument”, "DoRead", and so forth.

v Sample Code

The following C++ example shows how a parent class can enforce an invariant for its subclasses. The
example comes from NeXT's AppKit [Add94]. Consider aclass Vi ewthat supports drawing on the
screen. Vi ew enforces the invariant that its subclasses can draw into aview only after it becomes the
"focus," which requires certain drawing state (for example, colors and fonts) to be set up properly.

WecanuseaDi spl ay template method to set up this state. Vi ew defines two concrete operations,
Set Focus and Reset Focus, that set up and clean up the drawing state, respectively. Vi ew's
DoDi spl ay hook operation performsthe actual drawing. Di spl ay calls Set Focus before
DoDi spl ay to set up the drawing state; Di spl ay callsReset Focus afterwards to release the
drawing state.

void View :D splay () {
Set Focus();
DoDi spl ay() ;
Reset Focus();

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5jfs.htm (4 of 5) [21/08/2002 19:23:20]

Template Method

To maintain the invariant, the Vi ews clients always call Di spl ay, and Vi ew subclasses aways
override DoDi spl ay.

DoDi spl ay doesnothingin Vi ew:
void View :DoDisplay () { }
Subclasses override it to add their specific drawing behavior:

void MyView : DoDi splay () {
/! render the view s contents
}

* Known Uses

Template methods are so fundamental that they can be found in almost every abstract class. Wirfs-Brock
et al. [WBWW90, WBJI0] provide agood overview and discussion of template methods.

v Related Patterns

Factory Methods (107) are often called by template methods. In the Motivation example, the factory
method DoCreateDocument is called by the template method OpenDocument.

Strategy (315): Template methods use inheritance to vary part of an algorithm. Strategies use delegation
to vary the entire agorithm.

Y
p Visitor

4 Strategy

y
Abstract Factory + Adapter = Bridge = Builder = Chain of Responsibility = Command + Composite =
Decorator * Facade » Factory Method * Flyweight = Imterpreter » lterator = Mediator = Memento »
Observer = Prototype + Proxy = Singleton = State » Strategy = Template Method = Visitor

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5jfs.htm (5 of 5) [21/08/2002 19:23:20]

Visitor

©

SEARCH

Intent
Motivation
Applicability
Structure
Participants
Collaborations
Consequences
Implamentation
Sample Code
Known Uses
Related Patterns

Help | Intro | Case Study | Pattern Catalog | Conclusion

Visitor Object Behavioral

| Contents |'I3ui|:|t: to Hnﬂdusl Glossary | Notation | Foundation | Bibliography | Index | Pattern Map |

¥ Intent

Represent an operation to be performed on the elements of an object structure. Visitor lets you define a new
operation without changing the classes of the elements on which it operates.

v Motivation

Consider a compiler that represents programs as abstract syntax trees. It will need to perform operations on
abstract syntax trees for "static semantic" analyses like checking that all variables are defined. It will also need to
generate code. So it might define operations for type-checking, code optimization, flow analysis, checking for
variables being assigned values before they're used, and so on. Moreover, we could use the abstract syntax trees
for pretty-printing, program restructuring, code instrumentation, and computing various metrics of a program.

Most of these operations will need to treat nodes that represent assignment statements differently from nodes
that represent variables or arithmetic expressions. Hence there will be one class for assignment statements,
another for variable accesses, another for arithmetic expressions, and so on. The set of hode classes depends on
the language being compiled, of course, but it doesn't change much for a given language.

Node

TvpaCheck()

GenerateCodei)

PratiyPrint)
VariableRefNode AssignmentMNode
TypaCheck(} TypeCheack()
GenerateCoda() GenerateCode()
PrettyPrint]) PrettyPrint{)

This diagram shows part of the Node class hierarchy. The problem hereisthat distributing all these operations
across the various node classes leads to a system that's hard to understand, maintain, and change. It will be
confusing to have type-checking code mixed with pretty-printing code or flow analysis code. Moreover, adding
anew operation usually requires recompiling all of these classes. It would be better if each new operation could
be added separately, and the node classes were independent of the operations that apply to them.

We can have both by packaging related operations from each class in a separate object, called avisitor, and
passing it to elements of the abstract syntax tree asit's traversed. When an element "accepts' the visitor, it sends
arequest to the visitor that encodes the element's class. It aso includes the element as an argument. The visitor
will then execute the operation for that element—the operation that used to be in the class of the element.

For example, a compiler that didn't use visitors might type-check a procedure by calling the TypeCheck
operation on its abstract syntax tree. Each of the nodes would implement TypeCheck by calling TypeCheck on
its components (see the preceding class diagram). If the compiler type-checked a procedure using visitors, then it
would create a TypeCheckingVisitor object and call the Accept operation on the abstract syntax tree with that
object as an argument. Each of the nodes would implement Accept by calling back on the visitor: an assignment
node calls VisitAssignment operation on the visitor, while avariable reference calls VisitV ariableReference.
What used to be the TypeCheck operation in class AssignmentNode is how the VisitAssignment operation on

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5kfs.htm (1 of 11) [21/08/2002 19:23:40]

javascript:loadApplet()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5k.htm#relatedpatterns
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5k.htm#knownuses
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5k.htm#samplecode
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5k.htm#implementation
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5k.htm#consequences
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5k.htm#collaborations
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5k.htm#participants
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5k.htm#structure
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5k.htm#applicability
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5k.htm#motivation
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5k.htm#intent
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/helpfs.htm
javascript:build()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/patcafs.htm

Visitor

TypeCheckingVisitor.

To make visitors work for more than just type-checking, we need an abstract parent class NodeVisitor for all
visitors of an abstract syntax tree. NodeVisitor must declare an operation for each node class. An application that
needs to compute program metrics will define new subclasses of NodeVisitor and will no longer need to add
application-specific code to the node classes. The Visitor pattern encapsulates the operations for each
compilation phase in a Visitor associated with that phase.

NodeVisitor

VisitAssignment{AssignmentMNods)
VisitVarableReffVariabla Refiods)

A

| I

TypeCheckingVisitor CodeGeneratingVisitor
Visithssignment{AssignmentMode) Visithssignment{Assignmenthode)
VisitWariableRef{VariableRafNoda) VisitWariableRef{VariableHafModa)

Program Q—E-J Node

AcceptNodelisitor)

AssignmentMode VariableRelNode

Accept{ModaVisitor v) IIJ Accepl{ModeVistar v '?
i i
I]

'.l—:b-"n.l'|5il.ﬁ.55|gnrnant[lhis:|ﬁ \r—::'l..l'islt‘u’ariablaFlall:thE]H

With the Visitor pattern, you define two class hierarchies: one for the elements being operated on (the Node
hierarchy) and one for the visitors that define operations on the elements (the NodeVisitor hierarchy). Y ou create
anew operation by adding anew subclassto the visitor class hierarchy. Aslong as the grammar that the
compiler accepts doesn't change (that is, we don't have to add new Node subclasses), we can add new
functionality smply by defining new NodeVisitor subclasses.

v Applicability
Use the Visitor pattern when

. an abject structure contains many classes of objects with differing interfaces, and you want to perform
operations on these objects that depend on their concrete classes.

. many distinct and unrelated operations need to be performed on objects in an object structure, and you
want to avoid "polluting” their classes with these operations. Visitor lets you keep related operations
together by defining them in one class. When the object structure is shared by many applications, use
Visitor to put operationsin just those applications that need them.

. the classes defining the object structure rarely change, but you often want to define new operations over
the structure. Changing the object structure classes requires redefining the interface to all visitors, which
is potentially costly. If the object structure classes change often, then it's probably better to define the
operationsin those classes.

v Structure

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5kfs.htm (2 of 11) [21/08/2002 19:23:40]

Visitor

Cllenl w| Visifor

VisitConcrateiementAiConcrateElementA}
VisitConcreteElementBfConcrateElemeaniB)

A

ConcrateVisitor ConcreteVisitor2
VisitConcreteElemantA{ConcreteElameanta) VisitConcreteElementa]Concrete Elementa)
VisitConcreteElementB{ ConcreteElementB) VisitConcreteElementB{ConcreteElementB)

| ObjectStructure | e Element

AcceptVisitor)

A

ConcreteElementA ConcreteElementB

OperationAl) OperationBi)

Accapt{Visitorv) Accapt(Visitor vy @
| |
| |
: ;

W= :-‘-IisitCnncreleElemenl.ﬁ.n:mis]H v==VisitConcreteE IementB(lhisﬁH

v Participants
. Vigtor (NodeVisitor)

o declaresaVisit operation for each class of ConcreteElement in the object structure. The
operation's name and signature identifies the class that sends the Visit request to the visitor. That
lets the visitor determine the concrete class of the element being visited. Then the visitor can
access the element directly through its particular interface.

. ConcreteVisitor (TypeCheckingVisitor)

o implements each operation declared by Visitor. Each operation implements a fragment of the
algorithm defined for the corresponding class of object in the structure. ConcreteVisitor provides
the context for the algorithm and storesitslocal state. This state often accumulates results during
thetraversal of the structure.

Element (Node)

o defines an Accept operation that takes a visitor as an argument.

ConcreteElement (AssignmentNode,V ariableRefNode)

o implements an Accept operation that takes a visitor as an argument.

ObjectStructure (Program)
o can enumerate its elements.
o may provide ahigh-level interface to allow the visitor to visit its elements.

o may either be a composite (see Composite (163)) or a collection such asalist or a set.

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5kfs.htm (3 of 11) [21/08/2002 19:23:40]

Visitor

* Collaborations

. A client that usesthe Visitor pattern must create a ConcreteVisitor object and then traverse the object
structure, visiting each element with the visitor.

. When an element isvisited, it calsthe Visitor operation that corresponds to its class. The element
suppliesitself as an argument to this operation to let the visitor accessits state, if necessary.

The following interaction diagram illustrates the collaborations between an object structure, avisitor, and

two elements:
anObjectStructure aConcrateElemeanta aConcreteElementB aConcreteVisitor
J‘ AcceptiaVisitor) J_
™ | VisitConcreteElementAjaConcreteElamentd)
I Oparationdl)
b
Accept{aVisitor) T
—| WigitConcreteElementB{aConcreteElementB)
OperationBi}
2

* Consequences

Some of the benefits and liabilities of the Visitor pattern are as follows:

1. Visitor makes adding new operations easy. Visitors make it easy to add operations that depend on the
components of complex objects. Y ou can define a new operation over an object structure ssmply by
adding anew visitor. In contrast, if you spread functionality over many classes, then you must change
each class to define a new operation.

2. Avisitor gathersrelated operations and separates unrelated ones. Related behavior isn't spread over the
classes defining the object structure; it'slocalized in avisitor. Unrelated sets of behavior are partitioned in
their own visitor subclasses. That simplifies both the classes defining the elements and the algorithms
defined in the visitors. Any algorithm-specific data structures can be hidden in the visitor.

3. Adding new ConcreteElement classesis hard. The Visitor pattern makesit hard to add new subclasses of
Element. Each new ConcreteElement givesrise to a new abstract operation on Visitor and a
corresponding implementation in every ConcreteVisitor class. Sometimes a default implementation can
be provided in Visitor that can be inherited by most of the ConcreteVisitors, but thisis the exception
rather than the rule.

So the key consideration in applying the Visitor pattern is whether you are mostly likely to change the
algorithm applied over an object structure or the classes of objects that make up the structure. The Visitor
class hierarchy can be difficult to maintain when new ConcreteElement classes are added frequently. In
such cases, it's probably easier just to define operations on the classes that make up the structure. If the
Element class hierarchy is stable, but you are continually adding operations or changing algorithms, then
the Visitor pattern will help you manage the changes.

4. Visiting across class hierarchies. An iterator (see Iterator (257)) can visit the objectsin a structure as it
traverses them by calling their operations. But an iterator can't work across object structures with
different types of elements. For example, the Iterator interface defined on page 263 can access only

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5kfs.htm (4 of 11) [21/08/2002 19:23:40]

Visitor

objectsof typel t em

tenplate <class ltene
class Iterator {
...
Item Currentltem() const;

3
Thisimpliesthat all elements the iterator can visit have a common parent class| t em

Visitor does not have thisrestriction. It can visit objects that don't have a common parent class. Y ou can
add any type of object to a Visitor interface. For example, in

class Visitor {
publi c:

1.

void VisitWType(MType*);

voi d Vi sitYourType(Your Type*);
3

MyType and Your Type do not have to be related through inheritance at all.

5. Accumulating state. Visitors can accumulate state as they visit each element in the object structure.
Without avisitor, this state would be passed as extra arguments to the operations that perform the
traversal, or they might appear as global variables.

6. Breaking encapsulation. Visitor's approach assumes that the ConcreteElement interface is powerful
enough to let visitors do their job. As aresult, the pattern often forces you to provide public operations
that access an element'sinternal state, which may compromise its encapsulation.

v Implementation

Each abject structure will have an associated Visitor class. This abstract visitor class declares a
VisitConcreteElement operation for each class of ConcreteElement defining the object structure. Each Visit
operation on the Visitor declares its argument to be a particular ConcreteElement, allowing the Visitor to access
the interface of the ConcreteElement directly. ConcreteVisitor classes override each Visit operation to
implement visitor-specific behavior for the corresponding ConcreteElement class.

The Visitor class would be declared like thisin C++:

class Visitor {

publi c:
virtual void VisitEl ement ACEl ement A*) ;
virtual void VisitEl enent B(El ement B¥);

// and so on for other concrete el enents
pr ot ect ed:
Visitor();

s

Each class of ConcreteElement implements an Accept operation that callsthe matching Vi si t. . . operation
on the visitor for that ConcreteElement. Thus the operation that ends up getting called depends on both the class

of the element and the class of the visitor.10

The concrete elements are declared as

cl ass El enent {
publi c:

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5kfs.htm (5 of 11) [21/08/2002 19:23:40]

Visitor

virtual ~Element();
virtual void Accept(Visitor& = 0;

pr ot ect ed:
El emrent () ;
3
class ElenentA : public Elenment {
publi c:
El emrent A() ;
virtual void Accept(Visitor& v) { v.VisitEl ementA(this); }
3
class ElenentB : public Element {
publi c:
El ement B() ;
virtual void Accept(Visitor& v) { v.VisitElenentB(this); }
3

A Conposi t eEl enent class might implement Accept likethis:

cl ass ConpositeEl ement : public Elenment {
publi c:

virtual void Accept(Visitor&);
private:

Li st<El ement*>* _chil dren;

b

voi d ConpositeEl enment:: Accept (Visitor& v) {
Listlterator<El enent*> i(_children);

for (i.First(); !i.lsDone(); i.Next()) {
i.Currentlten()->Accept(V);

}
v. Vi si t Conposi t eEl enent (this);

}

Here are two other implementation issues that arise when you apply the Visitor pattern:

1. Double dispatch. Effectively, the Visitor pattern lets you add operations to classes without changing
them. Visitor achieves this by using atechnique called double-dispatch. It's awell-known technique. In
fact, some programming languages support it directly (CLOS, for example). Languages like C++ and
Smalltalk support single-dispatch.

In single-dispatch languages, two criteria determine which operation will fulfill a request: the name of the
request and the type of receiver. For example, the operation that a GenerateCode request will call
depends on the type of node object you ask. In C++, calling Gener at eCode on an instance of

Var i abl eRef Node will call Vari abl eRef Node: : Gener at eCode (which generates code for a
variable reference). Calling Gener at eCode on an Assi gnment Node will call

Assi gnment Node: : Gener at eCode (which will generate code for an assignment). The operation
that gets executed depends both on the kind of request and the type of the receiver.

"Double-dispatch”" simply means the operation that gets executed depends on the kind of request and the
types of two receivers. Accept isadouble-dispatch operation. Its meaning depends on two types: the
Visitor's and the Element's. Double-dispatching lets visitors request different operations on each class of

element.11

Thisisthe key to the Visitor pattern: The operation that gets executed depends on both the type of Visitor
and the type of Element it visits. Instead of binding operations statically into the Element interface, you
can consolidate the operationsin a Visitor and use Accept to do the binding at run-time. Extending the

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5kfs.htm (6 of 11) [21/08/2002 19:23:40]

Visitor

Element interface amounts to defining one new Visitor subclass rather than many new Element
subclasses.

2. Who isresponsible for traversing the object structure? A visitor must visit each element of the object
structure. The question is, how doesit get there? We can put responsibility for traversal in any of three
places: in the object structure, in the visitor, or in a separate iterator object (see lterator (257)).

Often the object structure is responsible for iteration. A collection will simply iterate over its elements,
calling the Accept operation on each. A composite will commonly traverseitself by having each Accept
operation traverse the el ement's children and call Accept on each of them recursively.

Another solution isto use an iterator to visit the elements. In C++, you could use either an internal or
external iterator, depending on what is available and what is most efficient. In Smalltalk, you usually use
an internal iterator using do: and ablock. Since internal iterators are implemented by the object
structure, using an internal iterator is alot like making the object structure responsible for iteration. The
main difference isthat an internal iterator will not cause double-dispatching—it will call an operation on
the visitor with an element as an argument as opposed to calling an operation on the element with the
visitor as an argument. But it's easy to use the Visitor pattern with an internal iterator if the operation on
the visitor simply calls the operation on the element without recursing.

Y ou could even put the traversal algorithm in the visitor, although you'll end up duplicating the traversal
code in each ConcreteVisitor for each aggregate ConcreteElement. The main reason to put the traversal
strategy in the visitor is to implement a particularly complex traversal, one that depends on the results of
the operations on the object structure. Well give an example of such a case in the Sample Code.

v Sample Code

Because visitors are usually associated with composites, we'll use the Equi pnent classes defined in the
Sample Code of Composite (163) to illustrate the Visitor pattern. We will use Visitor to define operations for
computing the inventory of materials and the total cost for a piece of equipment. The Equi pnent classes are so
simple that using Visitor isn't realy necessary, but they make it easy to see what's involved in implementing the
pattern.

Here again isthe Equi pnent class from Composite (163). We've augmented it with an Accept operation to
let it work with avisitor.

cl ass Equi pnent {
public:
virtual ~Equi pment();

const char* Nanme() { return _nane; }

virtual Vatt Power();
virtual Currency NetPrice();
virtual Currency DiscountPrice();

virtual void Accept (Equi prentVisitor&);
pr ot ect ed:

Equi pment (const char*);
private:

const char* _nane;

3
The Equi pnent operations return the attributes of a piece of equipment, such asits power consumption and
cost. Subclasses redefine these operations appropriately for specific types of equipment (e.g., achassis, drives,
and planar boards).

The abstract class for all visitors of equipment has avirtual function for each subclass of equipment, as shown

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5kfs.htm (7 of 11) [21/08/2002 19:23:40]

Visitor

next. All of the virtual functions do nothing by default.

cl ass Equi pnentVisitor {
publi c:
virtual ~Equi pnentVisitor();

virtual void VisitFl oppyD sk(Fl oppyDi sk*);
virtual void VisitCard(Card*);

virtual void VisitChassis(Chassis?*);
virtual void VisitBus(Bus*);

/1 and so on for other concrete subclasses of Equi pnent
prot ect ed:
Equi pnent Visitor();

s

Equi prment subclasses define Accept in basically the same way: It callsthe Equi prent Vi si t or
operation that corresponds to the class that received the Accept request, likethis:

voi d Fl oppyDi sk:: Accept (EquipnentVisitor& visitor) {
visitor. VisitFl oppyD sk(this);

}

Equipment that contains other equipment (in particular, subclasses of Conposi t eEqui pnent inthe
Composite pattern) implements Accept by iterating over its children and calling Accept on each of them.
Thenit callsthe Vi si t operation as usual. For example, Chassi s: : Accept could traverse all the partsin
the chassis as follows:

voi d Chassis:: Accept (EquipnentVisitor& visitor) {

for (
Listlterator i(_parts);
l'i.lsDone();
i . Next ()
) A
i.Currentltem()->Accept(visitor);
}

visitor. VisitChassis(this);

}

Subclasses of Equi pnent Vi si t or define particular algorithms over the equipment structure. The
Pri ci ngVi si t or computes the cost of the equipment structure. It computes the net price of all simple
equipment (e.g., floppies) and the discount price of all composite equipment (e.g., chassis and buses).

class PricingVisitor : public Equi prentVisitor {
publi c:
PricingVisitor();

Currency& CGet Total Price();

virtual void VisitFloppyD sk(Fl oppyD sk*);
virtual void VisitCard(Card*);
virtual void VisitChassis(Chassis*);
virtual void VisitBus(Bus*);
11

private:
Currency _total;

}s

void PricingVisitor::VisitFl oppyD sk (Fl oppyDi sk* e) {
_total += e->NetPrice();

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5kfs.htm (8 of 11) [21/08/2002 19:23:40]

Visitor

}

void PricingVisitor::VisitChassis (Chassis* e) {
_total += e->DiscountPrice();
}

Pri ci ngVi si t or will compute the total cost of al nodes in the equipment structure. Note that

Pri ci ngVi si t or chooses the appropriate pricing policy for a class of equipment by dispatching to the
corresponding member function. What's more, we can change the pricing policy of an equipment structure just
by changing the Pri ci ngVi si t or class.

We can define avisitor for computing inventory like this:

class InventoryVisitor : public EquipnentVisitor {
publi c:
I nventoryVisitor();

I nventory& Getlnventory();

virtual void VisitFloppyD sk(Fl oppyD sk*);
virtual void VisitCard(Card*);

virtual void VisitChassis(Chassis*);
virtual void VisitBus(Bus*);

11

private:
I nventory _inventory;

b

Thel nvent or yVi si t or accumulates the totals for each type of equipment in the object structure.
I nvent oryVi si tor usesan| nvent ory classthat defines an interface for adding equipment (which we
won't bother defining here).

void InventoryVisitor::VisitFl oppyD sk (FloppyDi sk* e) {
_inventory. Accurmul at e(e);

}

void InventoryVisitor::VisitChassis (Chassis* e) {
_inventory. Accunmul at e(e);
}

Here'show we can usean | nvent or yVi si t or onan egquipment structure:

Equi pmrent * conponent ;
InventoryVisitor visitor;

conponent - >Accept (vi sitor);
cout << "lnventory "

<< component - >Name()

<< visitor.Cetlnventory();

Now we'll show how to implement the Smalltalk example from the Interpreter pattern (see page 248) with the

Visitor pattern. Like the previous example, this oneis so small that Visitor probably won't buy us much, but it
provides agood illustration of how to use the pattern. Further, it illustrates a situation in which iteration isthe
visitor's responsibility.

The object structure (regular expressions) is made of four classes, and al of them have an accept : method
that takes the visitor as an argument. In class SequenceExpr essi on, theaccept : methodis

accept: aVisitor

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5kfs.htm (9 of 11) [21/08/2002 19:23:40]

Visitor

N aVisitor visitSequence: self

In class Repeat Expr essi on, theaccept : method sendsthevi si t Repeat : message. In class
Al t ernati onExpressi on,itsendsthevi sit Al t er nati on: message. In class
Li t eral Expression,itsendsthevi sitLiteral: message.

The four classes also must have accessing functions that the visitor can use. For SequenceExpr essi on these
areexpr essi onl and expr essi on2; for Al t er nat i onExpr essi on theseareal t ernati vel and

al ternati ve2; for Repeat Expressi onitisrepetition;andforLiteral Expressi ontheseare
conponent s.

The ConcreteVisitor classis REMat chi ngVi si t or . Itisresponsible for the traversal because its traversal
algorithmisirregular. The biggest irregularity isthat aRepeat Expr essi on will repeatedly traverse its
component. The class REMat chi ngVi si t or hasan instance variablei nput St at e. Its methods are
essentially the same asthe mat ch: methods of the expression classes in the Interpreter pattern except they
replace the argument named i nput St at e with the expression node being matched. However, they till return
the set of streams that the expression would match to identify the current state.

Vi si t Sequence: sequenceExp
i nput State : = sequenceExp expressionl accept: self.
N sequenceExp expression2 accept: self.

vi sit Repeat: repeat Exp

| final State |

final State : = input State copy.

[input State isEnpty]

whi | eFal se:

[input State := repeat Exp repetition accept: self.
final State addAll: inputState].

N final State

visitAlternation: alternateExp
| final State original State |

original State : = inputState.
final State : = alternateExp alternativel accept: self.
i nputState : = original State.

final State addAll: (alternateExp alternative2 accept: self).
A final State

visitLiteral: literal Exp
| final State tStream |
final State : = Set new.
i nput St ate
do:

[:stream | tStream:= stream copy.
(t Stream next Avai | abl e:
literal Exp conmponents size
) = literal Exp conponents
ifTrue: [final State add: tStreani
].

N final State

* Known Uses

The Smalltalk-80 compiler has a Visitor class called ProgramNodeEnumerator. It's used primarily for algorithms
that analyze source code. It isn't used for code generation or pretty-printing, although it could be.

IRIS Inventor [Str93] is atoolkit for developing 3-D graphics applications. Inventor represents a three-
dimensional scene as a hierarchy of nodes, each representing either a geometric object or an attribute of one.

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5kfs.htm (10 of 11) [21/08/2002 19:23:40]

Visitor

Operations like rendering a scene or mapping an input event require traversing this hierarchy in different ways.
Inventor does this using visitors called "actions." There are different visitors for rendering, event handling,
searching, filing, and determining bounding boxes.

To make adding new nodes easier, Inventor implements a double-dispatch scheme for C++. The scheme relies
on run-time type information and a two-dimensional table in which rows represent visitors and columns
represent node classes. The cells store a pointer to the function bound to the visitor and node class.

Mark Linton coined the term "Visitor" in the X Consortium's Fresco Application Toolkit specification [LP93].

v Related Patterns

Composite (163): Visitors can be used to apply an operation over an object structure defined by the Composite
pattern.

Interpreter (243): Visitor may be applied to do the interpretation.

Y
p Discussion of Behavioral Patterns

4 Template Method

10we could use function overloading to give these operations the same simple name, like Vi si t , sincethe
operations are already differentiated by the parameter they're passed. There are pros and cons to such
overloading. On the one hand, it reinforces the fact that each operation involves the same analysis, albeit on a
different argument. On the other hand, that might make what's going on at the call site less obvious to someone
reading the code. It really boils down to whether you believe function overloading is good or not.

111f we can have double-dispatch, then why not triple or quadruple, or any other number? Actually, double-
dispatch isjust a special case of multiple dispatch, in which the operation is chosen based on any number of
types. (CLOS actually supports multiple dispatch.) Languages that support double- or multiple dispatch lessen
the need for the Visitor pattern.

§
Abstract Factory = Adapter « Bridge = Builder + Chain of Responsibility = Command = Composite
Decorator » Facade » Factory Method = Flyweight = Interpreter = lterator = Mediator = Memento =
Observer » Prototype = Proxy * Singleton « State « Strategy + Template Method « Visitor

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5kfs.htm (11 of 11) [21/08/2002 19:23:40]

Discussion of Behavioral Patterns

G) Discussion of Case Study | Pattern Catalog | Conclusion
SRR Behavioral Patterns

| Contents |ﬁ.|i|:|ntu Hﬂﬂdﬂ'5| Glossary | Notation | Foundation | Bibliography | Index | Pattern Map |

Encapsulating
Variation
Objects as

LUl v Encapsulating Variation
Should

Communication
HE TR Encapsulating variation is atheme of many behavioral patterns. When an aspect of a program changes

L BT frequently, these patterns define an object that encapsulates that aspect. Then other parts of the program
HEI can collaborate with the object whenever they depend on that aspect. The patterns usually define an
ULEER N abstract class that describes the encapsul ating object, and the pattern derives its name from that object.12
Recelvars For example,

Summary

. aStrategy object encapsulates an algorithm (Strategy (315)),
. aState object encapsulates a state-dependent behavior (State (305)),

. aMediator object encapsulates the protocol between objects (Mediator (273)), and

. an lterator object encapsulates the way you access and traverse the components of an aggregate

object (Iterator (257)).

These patterns describe aspects of a program that are likely to change. Most patterns have two kinds of
objects: the new object(s) that encapsulate the aspect, and the existing object(s) that use the new ones.
Usually the functionality of new objects would be an integral part of the existing objects were it not for
the pattern. For example, code for a Strategy would probably be wired into the strategy's Context, and
code for a State would be implemented directly in the state's Context.

But not all object behavioral patterns partition functionality like this. For example, Chain of
Responsibility (223) deals with an arbitrary number of objects (i.e., achain), all of which may already
exist in the system.

Chain of Responsibility illustrates another difference in behaviora patterns: Not al define static
communication rel ationships between classes. Chain of Responsibility prescribes communication
between an open-ended number of objects. Other patterns involve objects that are passed around as
arguments.

¥ Objects as Arguments

Several patterns introduce an object that's always used as an argument. One of these is Visitor (331). A
Visitor object is the argument to a polymorphic Accept operation on the objectsit visits. The visitor is
never considered a part of those objects, even though the conventional alternative to the pattern isto
distribute Visitor code across the object structure classes.

Other patterns define objects that act as magic tokens to be passed around and invoked at a later time.
Both Command (233) and Memento (283) fall into this category. In Command, the token represents a
request; in Memento, it represents the internal state of an object at a particular time. In both cases, the
token can have a complex internal representation, but the client is never aware of it. But even here there
are differences. Polymorphism isimportant in the Command pattern, because executing the Command
object is a polymorphic operation. In contrast, the Memento interface is so narrow that a memento can
only be passed as avalue. So it'slikely to present no polymorphic operations at all to its clients.

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/disc5fs.htm (1 of 5) [21/08/2002 19:23:59]

javascript:loadApplet()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/disc5.htm#summary
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/disc5.htm#decouple-sandr
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/disc5.htm#media-vs-obsrv
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/disc5.htm#objects
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/disc5.htm#encap
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/helpfs.htm
javascript:build()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/patcafs.htm

Discussion of Behavioral Patterns

v Should Communication be Encapsulated or
Distributed?

Mediator (273) and Observer (293) are competing patterns. The difference between them is that Observer

distributes communication by introducing Observer and Subject objects, whereas a Mediator object
encapsul ates the communication between other objects.

In the Observer pattern, there is no single object that encapsulates a constraint. Instead, the Observer and
the Subject must cooperate to maintain the constraint. Communication patterns are determined by the
way observers and subjects are interconnected: a single subject usually has many observers, and
sometimes the observer of one subject is a subject of another observer. The Mediator pattern centralizes
rather than distributes. It places the responsibility for maintaining a constraint squarely in the mediator.

We've found it easier to make reusable Observers and Subjects than to make reusable Mediators. The
Observer pattern promotes partitioning and loose coupling between Observer and Subject, and that |eads
to finer-grained classes that are more apt to be reused.

On the other hand, it's easier to understand the flow of communication in Mediator than in Observer.
Observers and subjects are usually connected shortly after they're created, and it's hard to see how they
are connected later in the program. If you know the Observer pattern, then you understand that the way
observers and subjects are connected isimportant, and you aso know what connectionsto look for.
However, the indirection that Observer introduces will still make a system harder to understand.

Observersin Smalltalk can be parameterized with messages to access the Subject state, and so they are
even more reusable than they are in C++. This makes Observer more attractive than Mediator in
Smalltalk. Thus a Smalltalk programmer will often use Observer where a C++ programmer would use
Mediator.

¥ Decoupling Senders and Receivers

When collaborating objects refer to each other directly, they become dependent on each other, and that
can have an adverse impact on the layering and reusability of a system. Command, Observer, Mediator,
and Chain of Responsibility address how you can decouple senders and receivers, but with different trade-
offs.

The Command pattern supports decoupling by using a Command object to define the binding between a
sender and receiver:

anlnvoker aCommand aReceiver
(sender) (receiver)
Execute() Action()

The Command object provides a simple interface for issuing the request (that is, the Execute operation).
Defining the sender-receiver connection in a separate object lets the sender work with different receivers.
It keeps the sender decoupled from the receivers, making senders easy to reuse. Moreover, you can reuse
the Command object to parameterize areceiver with different senders. The Command pattern nominally
reguires a subclass for each sender-receiver connection, although the pattern describes implementation
techniques that avoid subclassing.

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/disc5fs.htm (2 of 5) [21/08/2002 19:23:59]

Discussion of Behavioral Patterns
The Observer pattern decouples senders (subjects) from receivers (observers) by defining an interface for

signaling changes in subjects. Observer defines alooser sender-receiver binding than Command, since a
subject may have multiple observers, and their number can vary at run-time.

aSubject anObserver anObserver anObserver

{zender) (receiver) {receiver) {receiver)
|
Update(}
Update(} .|:|
Update(}

-

The Subject and Observer interfaces in the Observer pattern are designed for communicating changes.
Therefore the Observer pattern is best for decoupling objects when there are data dependencies between
them.

The Mediator pattern decouples objects by having them refer to each other indirectly through a Mediator
object.

aColleague aMediator aColleague aColleague
(sender/raceiver) {sender/recaiver) (senderraceiver)
i
-]
L. i

T

A Mediator object routes requests between Colleague objects and centralizes their communication.
Consequently, colleagues can only talk to each other through the Mediator interface. Because this
interface is fixed, the Mediator might have to implement its own dispatching scheme for added
flexibility. Requests can be encoded and arguments packed in such away that colleagues can request an
open-ended set of operations.

The Mediator pattern can reduce subclassing in a system, because it centralizes communication behavior
in one classinstead of distributing it among subclasses. However, ad hoc dispatching schemes often
decrease type safety.

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/disc5fs.htm (3 of 5) [21/08/2002 19:23:59]

Discussion of Behavioral Patterns

Finally, the Chain of Responsibility pattern decouples the sender from the receiver by passing the request
along achain of potential receivers:

aClient aHandler aHandler aHandler
{sender) {receiver) {receiver) (receiver)
1
HandleHelp()
HandleHelp()
HandleHelp()

T T

Since the interface between senders and receiversis fixed, Chain of Responsibility may also require a
custom dispatching scheme. Hence it has the same type-safety drawbacks as Mediator. Chain of
Responsibility is a good way to decouple the sender and the receiver if the chain is already part of the
system's structure, and one of several objects may be in a position to handle the request. Moreover, the
pattern offers added flexibility in that the chain can be changed or extended easily.

¥ Summary

With few exceptions, behavioral design patterns complement and reinforce each other. A classin achain
of responsibility, for example, will probably include at |east one application of Template Method (325).
The template method can use primitive operations to determine whether the object should handle the
request and to choose the object to forward to. The chain can use the Command pattern to represent
requests as objects. Interpreter (243) can use the State pattern to define parsing contexts. An iterator can
traverse an aggregate, and a visitor can apply an operation to each element in the aggregate.

Behavioral patterns work well with other patterns, too. For example, a system that uses the Composite
(163) pattern might use avisitor to perform operations on components of the composition. It could use

Chain of Responsibility to let components access global properties through their parent. It could also use
Decorator (175) to override these properties on parts of the composition. It could use the Observer

pattern to tie one object structure to another and the State pattern to let a component change its behavior
as its state changes. The composition itself might be created using the approach in Builder (97), and it

might be treated as a Prototype (117) by some other part of the system.

Well-designed object-oriented systems are just like this—they have multiple patterns embedded in
them—>but not because their designers necessarily thought in these terms. Composition at the pattern
level rather than the class or object levels lets us achieve the same synergy with greater ease.

A
p» Conclusion

4 Visitor

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/disc5fs.htm (4 of 5) [21/08/2002 19:23:59]

Discussion of Behavioral Patterns

12This theme runs through other kinds of patterns, too. AbstractFactory (87), Builder (97), and Prototype
(117) dl encapsulate knowledge about how objects are created. Decorator (175) encapsulates
responsibility that can be added to an object. Bridge (151) separates an abstraction from its
implementation, letting them vary independently.

y
Abstract Factory « Adapter = Bridge + Builder = Chain of Responsibility = Command + Composite =
Decorator * Facade = Factory Method = Flyweight = Imterpreter = lterator = Mediator = Memento »
Observer * Prototype « Proxy * Singleton * State * Strategy +« Template Method Visitor

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/disc5fs.htm (5 of 5) [21/08/2002 19:23:59]

Conclusion

Case Study | Pattern Catalog | Conclusion

OF " Conclusion

SEARCH
| Contents |Guide1nﬂeﬂders| Glossary | Notation | Foundation | Bibliography | Index | Pniternl.h:|

What o Expect
from Design
Patterns

A Brief History It's possible to argue that this book hasn't accomplished much. After all, it doesn't present any algorithms
The Pattern or programming techniques that haven't been used before. It doesn't give arigorous method for designing
Community systems, nor does it develop a new theory of design—it just documents existing designs. Y ou could

conclude that it makes a reasonable tutorial, perhaps, but it certainly can't offer much to an experienced
An Invitation . . :
object-oriented designer.

A Parting
Thought

We hope you think differently. Cataloging design patterns isimportant. It gives us standard names and
definitions for the techniques we use. If we don't study design patterns in software, we won't be able to
improve them, and it'll be harder to come up with new ones.

Thisbook isonly a start. It contains some of the most common design patterns that expert object-oriented
designers use, and yet people hear and learn about them solely by word of mouth or by studying existing
systems. Early drafts of the book prompted other people to write down the design patterns they use, and
it should prompt even more in its current form. We hope thiswill mark the start of a movement to
document the expertise of software practitioners.

This chapter discusses the impact we think design patterns will have, how they are related to other work
in design, and how you can get involved in finding and cataloging patterns.

v What to Expect from Design Patterns

Here are several ways in which the design patterns in this book can affect the way you design object-
oriented software, based on our day-to-day experience with them.

A Common Design Vocabulary

Studies of expert programmers for conventional languages have shown that knowledge and experience
isn't organized simply around syntax but in larger conceptual structures such as algorithms, data
structures and idioms [AS85, Cop92, Cur89, SS86], and plans for fulfilling a particular goal [SE84].
Designers probably don't think about the notation they're using for recording the design as much as they
try to match the current design situation against plans, algorithms, data structures, and idioms they have
learned in the past.

Computer scientists name and catalog algorithms and data structures, but we don't often name other
kinds of patterns. Design patterns provide a common vocabulary for designers to use to communicate,
document, and explore design aternatives. Design patterns make a system seem less complex by letting
you talk about it at a higher level of abstraction than that of a design notation or programming language.
Design patternsraise the level at which you design and discuss design with your colleagues.

Once you've absorbed the design patternsin this book, your design vocabulary will almost certainly
change. Y ou will speak directly in terms of the names of the design patterns. Y ou'll find yourself saying
things like, "Let's use an Observer here," or, "Let's make a Strategy out of these classes.”

A Documentation and Learning Aid

Knowing the design patterns in this book makes it easier to understand existing systems. Most large
object-oriented systems use these design patterns. People |earning object-oriented programming often
complain that the systems they're working with use inheritance in convoluted ways and that it's difficult

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap6fs.htm (1 of 7) [21/08/2002 19:24:56]

javascript:loadApplet()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap6.htm#sec6-5
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap6.htm#sec6-4
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap6.htm#sec6-3
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap6.htm#sec6-2
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap6.htm#sec6-1
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/helpfs.htm
javascript:build()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/patcafs.htm

Conclusion

to follow the flow of control. In large part this is because they do not understand the design patternsin
the system. Learning these design patterns will help you understand existing object-oriented systems.

These design patterns can also make you a better designer. They provide solutions to common problems.
If you work with object-oriented systems long enough, you'll probably learn these design patterns on
your own. But reading the book will help you learn them much faster. Learning these patterns will help a
novice act more like an expert.

Moreover, describing a system in terms of the design patterns that it uses will makeit alot easier to
understand. Otherwise, people will have to reverse-engineer the design to unearth the patterns it uses.
Having a common vocabulary means you don't have to describe the whole design pattern; you can just
name it and expect your reader to know it. A reader who doesn't know the patterns will have to look them
up at first, but that's still easier than reverse-engineering.

We use these patterns in our own designs, and we've found them invaluable. Y et we use the patternsin
arguably naive ways. We use them to pick names for classes, to think about and teach good design, and
to describe designs in terms of the sequence of design patterns we applied [BJ94]. It's easy to imagine
more sophisticated ways of using patterns, such as pattern-based CA SE tools or hypertext documents.
But patterns are a big help even without sophisticated tools.

An Adjunct to Existing Methods

Object-oriented design methods are supposed to promote good design, to teach new designers how to
design well, and to standardize the way designs are developed. A design method typically defines a set of
notations (usually graphical) for modeling various aspects of a design, along with a set of rules that
govern how and when to use each notation. Design methods usually describe problems that occur in a
design, how to resolve them, and how to evaluate design. But they haven't been able to capture the
experience of expert designers.

We believe our design patterns are an important piece that's been missing from object-oriented design
methods. The design patterns show how to use primitive techniques such as objects, inheritance, and
polymorphism. They show how to parameterize a system with an algorithm, a behavior, a state, or the
kind of objectsit's supposed to create. Design patterns provide away to describe more of the "why" of a
design and not just record the results of your decisions. The Applicability, Consequences, and
Implementation sections of the design patterns help guide you in the decisions you have to make.

Design patterns are especially useful in turning an analysis model into an implementation model. Despite
many claims that promise a smooth transition from object-oriented analysis to design, in practice the
transition is anything but smooth. A flexible and reusable design will contain objects that aren't in the
analysis model. The programming language and class libraries you use affect the design. Analysis
models often must be redesigned to make them reusable. Many of the design patterns in the catalog
address these issues, which iswhy we call them design patterns.

A full-fledged design method requires more kinds of patterns than just design patterns. There can also be
analysis patterns, user interface design patterns, or performance-tuning patterns. But the design patterns
are an essentia part, one that's been missing until now.

A Target for Refactoring

One of the problems in developing reusable software isthat it often has to be reorganized or refactored
[©J90]. Design patterns help you determine how to reorganize adesign, and they can reduce the amount
of refactoring you need to do later.

The lifecycle of object-oriented software has several phases. Brian Foote identifies these phases as the

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap6fs.htm (2 of 7) [21/08/2002 19:24:56]

Conclusion

prototyping, expansionary, and consolidating phases [Foo92].

The prototyping phase isaflurry of activity as the software is brought to life through rapid prototyping
and incremental changes, until it meets aninitia set of requirements and reaches adolescence. At this
point, the software usually consists of class hierarchies that closely reflect entitiesin the initial problem
domain. The main kind of reuse is white-box reuse by inheritance.

Once the software has reached adolescence and is put into service, its evolution is governed by two
conflicting needs: (1) the software must satisfy more requirements, and (2) the software must be more
reusable. New requirements usually add new classes and operations and perhaps whole class hierarchies.
The software goes through an expansionary phase to meet new requirements. This can't continue for
long, however. Eventualy the software will become too inflexible and arthritic for further change. The
class hierarchies will no longer match any problem domain. Instead they'll reflect many problem
domains, and classes will define many unrelated operations and instance variables.

To continue to evolve, the software must be reorganized in a process known as refactoring. Thisisthe
phase in which frameworks often emerge. Refactoring involves tearing apart classes into special- and
general-purpose components, moving operations up or down the class hierarchy, and rationalizing the
interfaces of classes. This consolidation phase produces many new kinds of objects, often by
decomposing existing objects and using object composition instead of inheritance. Hence black-box
reuse replaces white-box reuse. The continual need to satisfy more requirements along with the need for
more reuse propel s obj ect-oriented software through repeated phases of expansion and
consolidation—expansion as new requirements are satisfied, and consolidation as the software becomes
more general.

expansion

more requirements more reuse

prototyping consolidation

This cycle is unavoidable. But good designers are aware of the changes that can prompt refactorings.
Good designers also know class and object structures that can help avoid refactorings—their designs are
robust in the face of requirement changes. A thorough requirements analysis will highlight those
requirements that are likely to change during the life of the software, and a good design will be robust to
them.

Our design patterns capture many of the structures that result from refactoring. Using these patterns early
in the life of a design prevents later refactorings. But even if you don't see how to apply a pattern until
after you've built your system, the pattern can still show you how to change it. Design patterns thus
provide targets for your refactorings.

v A Brief History

The catalog began as a part of Erich's Ph.D. thesis [Gam91, Gam92]. Roughly half of the current patterns

werein histhesis. By OOPSLA '91 it was officialy an independent catalog, and Richard had joined
Erich to work on it. John started working on it soon thereafter. By OOPSLA '92, Ralph had joined the

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap6fs.htm (3 of 7) [21/08/2002 19:24:56]

Conclusion

group. We worked hard to make the catal og fit for publication at ECOOP '93, but soon we realized that a
90-page paper was not going to be accepted. So we summarized the catalog and submitted the summary,
which was accepted. We decided to turn the catalog into a book shortly thereafter.

Our names for the patterns have changed allittle along the way. "Wrapper" became "Decorator," "Glue"
became "Facade," "Solitaire” became "Singleton,” and "Walker" became "Visitor." A couple of patterns
got dropped because they didn't seem important enough. But otherwise the set of patternsin the catalog
has changed little since the end of 1992. The patterns themselves, however, have evolved tremendously.

In fact, noticing that something is a pattern is the easy part. All four of us are actively working on
building object-oriented systems, and we've found that it's easy to spot patterns when you look at enough
systems. But finding patterns is much easier than describing them.

If you build systems and then reflect on what you build, you will see patternsin what you do. But it's
hard to describe patterns so that people who don't know them will understand them and realize why they
are important. Experts immediately recognized the value of the catalog in its early stages. But the only
ones who could understand the patterns were those who had aready used them.

Since one of the main purposes of the book was to teach object-oriented design to new designers, we
knew we had to improve the catalog. We expanded the average size of a pattern from less than 2 to more
than 10 pages by including a detailed motivating example and sample code. We also started examining
the trade-offs and the various ways of implementing the pattern. This made the patterns easier to learn.

Another important change over the past year has been a greater emphasis on the problem that a pattern
solves. It's easiest to see a pattern as a solution, as a technique that can be adapted and reused. It's harder
to see when it is appropriate—to characterize the problems it solves and the context in which it's the best
solution. In general, it's easier to see what someone is doing than to know why, and the "why" for a
pattern is the problem it solves. Knowing the purpose of a pattern isimportant too, because it helps us
choose patterns to apply. It aso helps us understand the design of existing systems. A pattern author

must determine and characterize the problem that the pattern solves, even if you have to do it after you've
discovered its solution.

¥ The Pattern Community

We aren't the only ones interested in writing books that catal og the patterns experts use. We are a part of
alarger community interested in patternsin general and software-related patternsin particular.
Christopher Alexander isthe architect who first studied patterns in buildings and communities and
developed a"pattern language" for generating them. His work has inspired us time and again. So it's
fitting and worthwhile to compare our work to his. Then we'll look at others work in software-related
patterns.

Alexander's Pattern Languages

There are many ways in which our work is like Alexander's. Both are based on observing existing
systems and looking for patterns in them. Both have templates for describing patterns (although our
templates are quite different). Both rely on natural language and lots of examples to describe patterns
rather than formal languages, and both give rationales for each pattern.

But there are just as many ways in which our works are different:

1. People have been making buildings for thousands of years, and there are many classic examples
to draw upon. We have been making software systems for arelatively short time, and few are
considered classics.

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap6fs.htm (4 of 7) [21/08/2002 19:24:56]

Conclusion

2. Alexander gives an order in which his patterns should be used; we have not.

3. Alexander's patterns emphasize the problems they address, whereas design patterns describe the
solutions in more detail.

4. Alexander claims his patterns will generate complete buildings. We do not claim that our patterns
will generate complete programs.

When Alexander claims you can design a house simply by applying his patterns one after another, he has
goals similar to those of object-oriented design methodol ogists who give step-by-step rules for design.
Alexander doesn't deny the need for creativity; some of his patterns require understanding the living
habits of the people who will use the building, and his belief in the "poetry” of designimplies alevel of
expertise beyond the pattern language itself.1 But his description of how patterns generate designs
implies that a pattern language can make the design process deterministic and repeatable.

The Alexandrian point of view has helped us focus on design trade-offs—the different "forces" that help
shape adesign. His influence made us work harder to understand the applicability and consequences of
our patterns. It also kept us from worrying about defining aformal representation of patterns. Although
such arepresentation might make automating patterns possible, at this stage it's more important to
explore the space of design patterns than to formalize it.

From Alexander's point of view, the patterns in this book do not form a pattern language. Given the
variety of software systems that people build, it's hard to see how we could provide a"complete” set of
patterns, one that offers step-by-step instructions for designing an application. We can do that for certain
classes of applications, such as report-writing or making aforms-entry system. But our catalog isjust a
collection of related patterns; we can't pretend it's a pattern language.

In fact, we think it's unlikely that there will ever be a complete pattern language for software. But it's
certainly possible to make one that is more complete. Additions would have to include frameworks and
how to use them [Joh92], patterns for user interface design [BJ94], analysis patterns [Coa92], and al the
other aspects of developing software. Design patterns are just a part of alarger pattern language for
software.

Patterns in Software

Our first collective experience in the study of software architecture was at an OOPSLA '91 workshop led
by Bruce Anderson. The workshop was dedicated to devel oping a handbook for software architects.
(Judging from this book, we suspect "architecture encyclopedia’ will be a more appropriate name than
"architecture handbook.") That first workshop has led to a series of meetings, the most recent of which
being the first conference on Pattern Languages of Programs held in August 1994. This has created a
community of people interested in documenting software expertise.

Of course, others have had this goal as well. Donald Knuth's The Art of Computer Programming [Knu73]
was one of the first attempts to catalog software knowledge, though he focused on describing algorithms.
Even so, the task proved too great to finish. The Graphics Gems series [Gla90, Arv9l, Kir92] is another
catalog of design knowledge, though it too tends to focus on algorithms. The Domain Specific Software
Architecture program sponsored by the U.S. Department of Defense [GM 92] concentrates on gathering
architectural information. The knowledge-based software engineering community tries to represent
software-related knowledge in general. There are many other groups with goals at least alittle like ours.

James Coplien’'s Advanced C++: Programming Styles and Idioms [Cop92] has influenced us, too. The
patterns in his book tend to be more C++-specific than our design patterns, and his book contains lots of
lower-level patterns as well. But there is some overlap, as we point out in our patterns. Jim has been
active in the pattern community. He's currently working on patterns that describe peopl€'srolesin

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap6fs.htm (5 of 7) [21/08/2002 19:24:56]

Conclusion

software development organizations.

There are alot of other places in which to find descriptions of patterns. Kent Beck was one of the first
people in the software community to advocate Christopher Alexander's work. In 1993 he started writing a
column in The Smalltalk Report on Smalltalk patterns. Peter Coad has also been collecting patterns for
some time. His paper on patterns seems to us to contain mostly analysis patterns [Coa92]; we haven't
seen his latest patterns, though we know he is still working on them. We've heard of several books on
patterns that are in the works, but we haven't seen any of them, either. All we can do islet you know
they're coming. One of these books will be from the Pattern Languages of Programs conference.

* An Invitation

What can you do if you are interested in patterns? First, use them and look for other patternsthat fit the
way you design. A lot of books and articles about patterns will be coming out in the next few years, so

there will be plenty of sources for new patterns. Develop your vocabulary of patterns, and useit. Use it
when you talk with other people about your designs. Use it when you think and write about them.

Second, be acritical consumer. The design pattern catalog is the result of hard work, not just ours but
that of dozens of reviewers who gave us feedback. If you spot a problem or believe more explanation is
needed, contact us. The same goes for any other catalog of patterns: Give the authors feedback! One of
the great things about patternsis that they move design decisions out of the realm of vague intuition.
They let authors be explicit about the trade-offs they make. This makes it easier to see what iswrong
with their patterns and to argue with them. Take advantage of that.

Third, look for patterns you use, and write them down. Make them a part of your documentation. Show
them to other people. Y ou don't have to be in aresearch lab to find patterns. In fact, finding relevant
patternsis nearly impossible if you don't have practical experience. Feel free to write your own catalog of
patterns...but make sure someone else helps you beat them into shape!

v A Parting Thought

The best designs will use many design patterns that dovetail and intertwine to produce a greater whole.
As Christopher Alexander says:

It is possible to make buildings by stringing together patterns, in arather loose way. A
building made like this, is an assembly of patterns. It is not dense. It is not profound. But it
is also possible to put patterns together in such away that many patterns overlap in the
same physical space: the building is very dense; it has many meanings captured in a small
space; and through this density, it becomes profound.

A Pattern Language [A1X+77, page xli]

&

» Glossary
4 Discussion of Behavioral Patterns

1See "The poetry of the language" [AIS+77].

§

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap6fs.htm (6 of 7) [21/08/2002 19:24:56]

Conclusion

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap6fs.htm (7 of 7) [21/08/2002 19:24:56]

Glossary

©

SEARCH

c

Help | Intro | Case Study | Pattern Catalog | Conclusion
Glossary

| Contents |ﬁ.|i|:|ntu Readers [t/ 518 Notation | Foundation | Bibliography | Index | Pattern Map |

abstract class
A class whose primary purposeis to define an interface. An abstract class defers some or all of its
implementation to subclasses. An abstract class cannot be instantiated.

abstract coupling
Given aclass A that maintains a reference to an abstract class B, class A is said to be abstractly
coupled to B. We call this abstract coupling because A refers to atype of object, not a concrete
object.

abstract operation
An operation that declares a signature but doesn't implement it. In C++, an abstract operation
corresponds to a pure virtual member function.

acquaintancerelationship
A class that refers to another class has an acquaintance with that class.

aggor egate obj ect
An object that's composed of subobjects. The subobjects are called the aggregate's parts, and the
aggregate is responsible for them.

aggr egation relationship
The relationship of an aggregate object to its parts. A class defines this relationship for its instances
(e.g., aggregate objects).

black-box reuse
A style of reuse based on object composition. Composed objects reveal no internal detailsto each
other and are thus analogous to "black boxes."

class
A class defines an object's interface and implementation. It specifies the object's internal
representation and defines the operations the object can perform.

classdiagram
A diagram that depicts classes, their internal structure and operations, and the static relationships
between them.

class operation
An operation targeted to a class and not to an individual object. In C++, class operations are are
called static member functions.

concrete class
A class having no abstract operations. It can be instantiated.

constructor
In C++, an operation that is automatically invoked to initialize new instances.

coupling
The degree to which software components depend on each other.

delegation
An implementation mechanism in which an object forwards or delegates a request to another object.
The delegate carries out the request on behalf of the original object.

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chapAfs.htm (1 of 4) [21/08/2002 19:25:20]

javascript:loadApplet()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/helpfs.htm
javascript:build()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/patcafs.htm

Glossary

design pattern
A design pattern systematically names, motivates, and explains ageneral design that addresses a
recurring design problem in object-oriented systems. It describes the problem, the solution, when to
apply the solution, and its consequences. It also gives implementation hints and examples. The
solution is a general arrangement of objects and classes that solve the problem. The solution is
customized and implemented to solve the problem in a particular context.

destructor
In C++, an operation that is automatically invoked to finalize an object that is about to be deleted.

dynamic binding
The run-time association of arequest to an object and one of its operations. In C++, only virtua
functions are dynamically bound.

encapsulation
The result of hiding a representation and implementation in an object. The representation is not
visible and cannot be accessed directly from outside the object. Operations are the only way to
access and modify an object's representation.

framewor k
A set of cooperating classes that makes up a reusable design for a specific class of software. A
framework provides architectural guidance by partitioning the design into abstract classes and
defining their responsibilities and collaborations. A developer customizes the framework to a
particular application by subclassing and composing instances of framework classes.

friend class
In C++, aclass that has the same access rights to the operations and data of a class as that classitself.

inheritance
A relationship that defines one entity in terms of another. Class inheritance definesanew classin
terms of one or more parent classes. The new classinheritsits interface and implementation from its
parents. The new classis called asubclass or (in C++) aderived class. Class inheritance combines
interface inheritance and implementation inheritance. Interface inheritance defines a new
interface in terms of one or more existing interfaces. Implementation inheritance defines a new
implementation in terms of one or more existing implementations.

instance variable
A piece of datathat defines part of an object’s representation. C++ uses the term data member .

interaction diagram
A diagram that shows the flow of requests between objects.

interface
The set of al signatures defined by an object's operations. The interface describes the set of requests
to which an object can respond.

metaclass
Classes are objectsin Smalltalk. A metaclassis the class of a class object.

mixin class
A class designed to be combined with other classes through inheritance. Mixin classes are usually
abstract.

obj ect
A run-time entity that packages both data and the procedures that operate on that data.

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chapAfs.htm (2 of 4) [21/08/2002 19:25:20]

Glossary

object composition
Assembling or composing objects to get more complex behavior.

object diagram
A diagram that depicts a particular object structure at run-time.

object reference
A value that identifies another object.

operation
An object's data can be manipulated only by its operations. An object performs an operation when it
receives areguest. In C++, operations are called member functions. Smalltalk uses the term
method.

overriding
Redefining an operation (inherited from a parent class) in a subclass.

parameterized type
A type that leaves some constituent types unspecified. The unspecified types are supplied as
parameters at the point of use. In C++, parameterized types are called templates.

parent class
The class from which another class inherits. Synonyms are super class (Smalltalk), base class
(C++), and ancestor class.

polymor phism
The ability to substitute objects of matching interface for one another at run-time.

private inheritance
In C++, aclassinherited solely for itsimplementation.

protocol
Extends the concept of an interface to include the allowable sequences of requests.

receiver
The target object of arequest.

request
An object performs an operation when it receives a corresponding request from another object. A
common synonym for request is message.

signature
An operation's signature defines its name, parameters, and return value.

subclass
A class that inherits from another class. In C++, asubclassis caled aderived class.

subsystem
An independent group of classes that collaborate to fulfill a set of responsibilities.

subtype
A typeisasubtype of another if itsinterface contains the interface of the other type.

supertype
The parent type from which atype inherits.

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chapAfs.htm (3 of 4) [21/08/2002 19:25:20]

Glossary

toolkit

A collection of classes that provides useful functionality but does not define the design of an
application.

type
The name of a particular interface.

white-box reuse
A style of reuse based on class inheritance. A subclass reuses the interface and implementation of its
parent class, but it may have access to otherwise private aspects of its parent.

'y
p» Guideto Notation

4 Conclusion

Abstract Factory = Adapter * Bridge * Builder + Chain of Responsibility » Command « Composite «
Decorator * Facade » Factory Method * Flyweight = Imterpreter » lterator = Mediator = Memento »
Observer * Prototype + Proxy + Singleton » State » Strategy + Template Method + Visitor

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chapAfs.htm (4 of 4) [21/08/2002 19:25:20]

Glossary

abstract class
A class whose primary purposeisto define an interface. An abstract class defers some or al of its
implementation to subclasses. An abstract class cannot be instantiated.

abstract coupling
Given aclass A that maintains areference to an abstract class B, class A is said to be abstractly
coupled to B. We call this abstract coupling because A refers to atype of object, not a concrete
object.

abstract operation
An operation that declares a signature but doesn't implement it. In C++, an abstract operation
corresponds to a pure virtual member function.

acquaintancerelationship
A class that refers to another class has an acquaintance with that class.

aggr egate obj ect
An object that's composed of subobjects. The subobjects are called the aggregate's parts, and the
aggregate is responsible for them.

aggr egation relationship
The relationship of an aggregate object to its parts. A class defines this relationship for its
instances (e.g., aggregate objects).

black-box reuse
A style of reuse based on object composition. Composed objects reveal no internal details to each
other and are thus analogous to "black boxes."

class
A class defines an object's interface and implementation. It specifies the object's internal
representation and defines the operations the object can perform.

classdiagram
A diagram that depicts classes, their internal structure and operations, and the static relationships
between them.

class operation
An operation targeted to a class and not to an individual object. In C++, class operations are are
called static member functions.

concrete class
A class having no abstract operations. It can be instantiated.

constructor
In C++, an operation that is automatically invoked to initialize new instances.

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chapA-0.htm (1 of 4) [21/08/2002 19:25:49]

Glossary

coupling
The degree to which software components depend on each other.

delegation
An implementation mechanism in which an object forwards or delegates a request to another
object. The delegate carries out the request on behalf of the original object.

design pattern
A design pattern systematically names, motivates, and explains a general design that addresses a
recurring design problem in object-oriented systems. It describes the problem, the solution, when
to apply the solution, and its consequences. It also gives implementation hints and examples. The
solution isageneral arrangement of objects and classes that solve the problem. The solution is
customized and implemented to solve the problem in a particular context.

destructor
In C++, an operation that is automatically invoked to finalize an object that is about to be deleted.

dynamic binding
The run-time association of arequest to an object and one of its operations. In C++, only virtua
functions are dynamically bound.

encapsulation
The result of hiding a representation and implementation in an object. The representation is not
visible and cannot be accessed directly from outside the object. Operations are the only way to
access and modify an object's representation.

framewor k
A set of cooperating classes that makes up areusable design for a specific class of software. A
framework provides architectural guidance by partitioning the design into abstract classes and
defining their responsibilities and collaborations. A developer customizes the framework to a
particular application by subclassing and composing instances of framework classes.

friend class

In C++, aclass that has the same access rights to the operations and data of a class as that class
itself.

inheritance
A relationship that defines one entity in terms of another. Class inheritance defines a new class
in terms of one or more parent classes. The new class inherits its interface and implementation
from its parents. The new classis called asubclassor (in C++) aderived class. Classinheritance
combinesinterface inheritance and implementation inheritance. Interface inheritance defines a
new interface in terms of one or more existing interfaces. Implementation inheritance defines a
new implementation in terms of one or more existing implementations.

instance variable
A piece of datathat defines part of an object's representation. C++ uses the term data member.

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chapA-0.htm (2 of 4) [21/08/2002 19:25:49]

Glossary

inter action diagram
A diagram that shows the flow of requests between objects.

interface
The set of all signatures defined by an object's operations. The interface describes the set of
requests to which an object can respond.

metaclass
Classes are objectsin Smalltalk. A metaclassis the class of a class object.

mixin class
A class designed to be combined with other classes through inheritance. Mixin classes are usually
abstract.

obj ect
A run-time entity that packages both data and the procedures that operate on that data.

obj ect composition
Assembling or composing objects to get more complex behavior.

object diagram
A diagram that depicts a particular object structure at run-time.

obj ect reference
A value that identifies another object.

oper ation
An object's data can be manipulated only by its operations. An object performs an operation when
it receives arequest. In C++, operations are called member functions. Smalltalk uses the term
method.

overriding
Redefining an operation (inherited from a parent class) in a subclass.

parameterized type
A type that leaves some constituent types unspecified. The unspecified types are supplied as
parameters at the point of use. In C++, parameterized types are called templates.

parent class
The class from which another class inherits. Synonyms are super class (Smalltalk), base class
(C++), and ancestor class.

polymor phism
The ahility to substitute objects of matching interface for one another at run-time.

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chapA-0.htm (3 of 4) [21/08/2002 19:25:49]

Glossary

privateinheritance
In C++, aclassinherited solely for itsimplementation.

protocol
Extends the concept of an interface to include the allowable sequences of requests.

receiver
The target object of arequest.

request
An object performs an operation when it receives a corresponding request from another object. A
common synonym for request is message.

signature
An operation's signature defines its name, parameters, and return value.

subclass
A class that inherits from another class. In C++, asubclassis called aderived class.

subsystem
An independent group of classes that collaborate to fulfill a set of responsibilities.

subtype
A typeis asubtype of another if its interface contains the interface of the other type.

supertype
The parent type from which atype inherits.

toolkit
A collection of classes that provides useful functionality but does not define the design of an
application.

type
The name of a particular interface.

white-box reuse
A style of reuse based on class inheritance. A subclass reuses the interface and implementation of
its parent class, but it may have access to otherwise private aspects of its parent.

A
p Guideto Notation

4 Conclusion

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chapA-0.htm (4 of 4) [21/08/2002 19:25:49]

Guide to Notation

G) Guide to Case Study | Pattern Catalog | Conclusion
SEARCH Notation
| Contents |Guide to Readers | Glossary [[L[1%[T}| Foundation | Bibliography | Index | Pattern Map |

Class Diagram
Object Diagram

LLEEEDUE \We use diagrams throughout the book to illustrate important ideas. Some diagrams are informal, like a

LU soreen shot of adialog box or a schematic showing atree of objects. But the design patterns in particular
use more formal notations to denote relationships and interactions between classes and objects. This
appendix describes these notations in detail.

We use three different diagrammatic notations:
1. A classdiagram depicts classes, their structure, and the static relationships between them.
2. Anobject diagram depicts a particular object structure at run-time.
3. Aninteraction diagram shows the flow of requests between objects.
Each design pattern includes at least one class diagram. The other notations are used as needed to
supplement the discussion. The class and object diagrams are based on OMT (Object Modeling

Technique) [RBP+91, Rum94].1 The interaction diagrams are taken from Objectory [JCJO92] and the
Booch method [Boo94]. These notations are summarized on the inside back cover of the book.

v Class Diagram

Figure B.1a showsthe OMT notation for abstract and concrete classes. A classis denoted by abox with
the class name in bold type at the top. The key operations of the class appear below the class name. Any
instance variables appear below the operations. Type information is optional; we use the C++
convention, which puts the type name before the name of the operation (to signify the return type),
instance variable, or actual parameter. Slanted type indicates that the class or operation is abstract.

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chapBfs.htm (1 of 4) [21/08/2002 19:26:26]

javascript:loadApplet()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chapB-0.htm#secB-3
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chapB-0.htm#secB-2
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chapB-0.htm#secB-1
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/helpfs.htm
javascript:build()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/patcafs.htm

Guide to Notation

AbstractClassName ConcreteClassMame
AbstractOperation1(} Oparationi)
Tyoe AbstractOperation2{} Type Operaticn2()
instanceVariable
Type instanceVariable2

(&) Abstract and concrete classes

Client

(b) Participant Client class (left) and implicit Client class (right)

shapes
Drawing Shape

:

CreationTool [----------—- - LineShape - Color

(¢) Class relationships

Drawing

for each shape { T
Draw(} O —-——r-—===-==7~7] shape-=Draw()
}

{d} Pseudocode annotation

Figure B.1: Class diagram notation

In some design patternsit's helpful to see where client classes reference Participant classes. When a
pattern includes a Client class as one of its participants (meaning the client has a responsibility in the
pattern), the Client appears as an ordinary class. Thisistruein Flyweight (195), for example. When the
pattern does not include a Client participant (i.e., clients have no responsibilities in the pattern), but
including it nevertheless clarifies which pattern participants interact with clients, then the Client classis
shown in gray, as shown in Figure B.1b. An exampleis Proxy (207). A gray Client also makesit clear
that we haven't accidentally omitted the Client from the Participants discussion.

Figure B.1c shows various relationships between classes. The OMT notation for class inheritance is a

triangle connecting a subclass (LineShape in the figure) to its parent class (Shape). An object reference
representing a part-of or aggregation relationship is indicated by an arrowheaded line with adiamond at

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chapBfs.htm (2 of 4) [21/08/2002 19:26:26]

Guide to Notation

the base. The arrow points to the class that is aggregated (e.g., Shape). An arrowheaded line without the
diamond denotes acquaintance (e.g., a LineShape keeps a reference to a Color object, which other shapes
may share). A name for the reference may appear near the base to distinguish it from other references.2

Another useful thing to show iswhich classes instantiate which others. We use a dashed arrowheaded
lineto indicate this, since OMT doesn't support it. We call thisthe "creates' relationship. The arrow
points to the class that's instantiated. In Figure B.1c, CreationTool creates LineShape objects.

OMT also defines afilled circle to mean "more than one.” When the circle appears at the head of a
reference, it means multiple objects are being referenced or aggregated. Figure B.1c shows that Drawing

aggregates multiple objects of type Shape.

Finally, we've augmented OMT with pseudocode annotations to let us sketch the implementations of
operations. Figure B.1d shows the pseudocode annotation for the Draw operation on the Drawing class.

* Object Diagram

An object diagram shows instances exclusively. It provides a snapshot of the objectsin adesign pattern.
The objects are named "aSomething", where Something is the class of the object. Our symbol for an
object (modified dlightly from standard OMT) is arounded box with a line separating the object name
from any object references. Arrows indicate the object referenced. Figure B.2 shows an example.

[aDrawing

shape((] #—

shape[i] #

—

[s | [oo |

Figure B.2: Object diagram notation

v Interaction Diagram

An interaction diagram shows the order in which requests between objects get executed. Figure B.3 isan
interaction diagram that shows how a shape gets added to a drawing.

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chapBfs.htm (3 of 4) [21/08/2002 19:26:26]

Guide to Notation

aCreationTool aDrawing aLineShape
| |
|
new LineShape :
Add{alinaShape)
-1 Refresh()
Draw()

Figure B.3: Interaction diagram notation

Time flows from top to bottom in an interaction diagram. A solid vertical lineindicates the lifetime of a
particular object. The naming convention for objects is the same as for object diagrams—the class name
prefixed by the letter "a" (e.g., aShape). If the object doesn't get instantiated until after the beginning of
time as recorded in the diagram, then its vertical line appears dashed until the point of creation.

A vertical rectangle shows that an object is active; that is, it is handling arequest. The operation can send
reguests to other objects; these are indicated with a horizontal arrow pointing to the receiving object. The
name of the request is shown above the arrow. A request to create an object is shown with a dashed
arrowheaded line. A request to the sending object itself points back to the sender.

Figure B.3 shows that the first request is from aCreationTool to create aLineShape. Later, aLineShapeis
Added to aDrawing, which prompts aDrawing to send a Refresh request to itself. Note that aDrawing
sends a Draw request to aLineShape as part of the Refresh operation.

A
p» Foundation Classes

4 Glossary

1OMT usestheterm "object diagram” to refer to class diagrams. We use "object diagram” exclusively to
refer to diagrams of object structures.

20MT aso defines associations between classes, which appear as plain lines between class boxes.
Associations are bidirectional. Although associations are appropriate during analysis, we feel they're too
high-level for expressing the relationships in design patterns, simply because associations must be
mapped down to object references or pointers during design. Object references areintrinsically directed
and are therefore better suited to the relationships that concern us. For example, Drawing knows about
Shapes, but the Shapes don't know about the Drawing they're in. Y ou can't express this relationship with
associations alone.

Abstract Factory » Adapter » Bridge » Builder = Chain of Responsibility = Command « Composite »
Decorator * Facade * Factory Method * Flyweight Interpreter ¢ lterator = Mediator *+ Memento »
Observer * Prototype « Proxy + Singleton = State » Strategy * Template Method » Visitor

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chapBfs.htm (4 of 4) [21/08/2002 19:26:26]

Foundation Classes

Foundation Case Study | Pattern Catalog | Contlusion
SEARCH Classes

| Contents |Guide to Readers | Glossary | Notation [T0C1I"TH| Bibliography | Index | Pattern Map |

List
lterator

L This appendix documents the foundation classes we use in the C++ sample code of several design
S patterns. We've intentionally kept the classes ssmple and minimal. We describe the following classes:

Rect
. List,anordered list of objects.

. lterator,theinterface for accessing an aggregate's objects in a sequence.

. Listlterator,aniterator for traversingali st .

. Poi nt , atwo-dimensional point.
. Rect , an axis-aligned rectangle.

Some newer C++ standard types may not be available on al compilers. In particular, if your compiler
doesn't define bool |, then define it manually as

typedef int bool;
const int true = 1;
const int false = 0;

v List

TheLi st classtemplate provides a basic container for storing an ordered list of objects. Li st stores
elements by value, which means it works for built-in types as well as class instances. For example, Li st
declaresalist of i nt s. But most of the patternsuse Li st to store pointersto objects, asinLi st . That
way Li st can be used for heterogeneous lists.

For convenience, Li st also provides synonyms for stack operations, which make code that usesLi st
for stacks more explicit without defining another class.

tenpl ate <class Itenp
class List {
publi c:
Li st (1 ong size = DEFAULT_LI ST_CAPACI TY);
Li st(List&);
~List();
Li st & operator=(const List&);

| ong Count () const;

Item& Get (|l ong index) const;
Item& First() const;

Item& Last() const;

bool Includes(const Item&) const;

voi d Append(const Iten®);
voi d Prepend(const Iteng);

voi d Renove(const Iten®);

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chapCfs.htm (1 of 5) [21/08/2002 19:27:17]

javascript:loadApplet()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chapC-0.htm#secC-5
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chapC-0.htm#secC-4
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chapC-0.htm#secC-3
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chapC-0.htm#secC-2
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chapC-0.htm#secC-1
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/helpfs.htm
javascript:build()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/patcafs.htm

Foundation Classes

voi d Renovelast ();
voi d RenoveFirst();
voi d RenoveAll ();

|tem& Top() const;
voi d Push(const Iten®);
| t em& Pop();

b

The following sections describe these operations in greater detail.

Construction, Destruction, Initialization, and Assignment

Li st (1 ong si ze)
initializesthelist. The si ze parameter isahint for the initial number of elements.

Li st (List&
overrides the default copy constructor so that member data are initialized properly.

~Li st ()
freesthe list'sinternal data structures but not the elementsin the list. The classis not designed for
subclassing; therefore the destructor isn't virtual.

Li st & operator=(const List&)
implements the assignment operation to assign member data properly.

Accessing
These operations provide basic access to the list's elements.

| ong Count () const
returns the number of objectsin thelist.

Item& Get (Il ong index) const
returns the object at the given index.

Item& First() const
returns the first object in the list.

Item& Last () const
returns the last object in the list.

Adding

voi d Append(const |ten&)
adds the argument to the list, making it the last element.

voi d Prepend(const |teng)
adds the argument to the list, making it the first element.

Removing

voi d Renove(const |teng)

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chapCfs.htm (2 of 5) [21/08/2002 19:27:17]

Foundation Classes

removes the given element from the list. This operation requires that the type of elementsin the
list supports the == operator for comparison.

voi d RenoveFi rst ()
removes the first element from the list.

voi d Renovelast ()
removes the last element from the list.

voi d RenmoveAll ()
removes all e ements from thelist.

Stack Interface

Item& Top() const
returns the top element (when the List is viewed as a stack).

voi d Push(const Itenm&)
pushes the element onto the stack.

Item& Pop()
pops the top element from the stack.

v [terator

| t er at or isan abstract class that defines atraversal interface for aggregates.

tenpl ate <class Itenp
class lterator {
publi c:
virtual void First() = 0;
virtual void Next() = O;
virtual bool 1sDone() const = 0;
virtual Item Currentlten() const = 0;
pr ot ect ed:
I[terator();

s
The operations do the following:

virtual void First()
positions the iterator to the first object in the aggregate.

virtual void Next()
positions the iterator to the next object in the sequence.

virtual bool 1sDone() const
returnst r ue when there are no more objects in the sequence.

virtual Item Currentltem) const
returns the object at the current position in the sequence.

v Listlterator

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chapCfs.htm (3 of 5) [21/08/2002 19:27:17]

Foundation Classes

Li stlterator implementsthel t er at or interfaceto traverse List objects. Its constructor takes a
list to traverse as an argument.

tenpl ate <class Itenp
class Listlterator : public Iterator<itenr {
publi c:

Listlterator(const List<ltenp* alist);

virtual void First();

virtual void Next();

virtual bool |sDone() const;
virtual Item Currentlten() const;

}s
v Point

Poi nt represents a point in atwo-dimensional Cartesian coordinate space. Poi nt supports some
minimal vector arithmetic. The coordinates of a Poi nt are defined as

t ypedef float Coord;
Poi nt 's operations are self-explanatory.

cl ass Point {
publi c:
static const Point Zero;

Poi nt (Coord x = 0.0, Coord y = 0.0);

Coord X() const; void X(Coord x);
Coord Y() const; void Y(Coord y);

friend Point operator+(const Pointé& const Pointg&);
friend Point operator-(const Point& const Pointé&);
friend Point operator*(const Pointé& const Pointg&);
friend Point operator/(const Pointé& const Pointg&);

Poi nt & oper at or +=(const Poi nt &) ;
Poi nt & oper at or-=(const Poi nt &) ;
Poi nt & operator*=(const Point&);
Poi nt & oper at or/ =(const Poi nt &) ;

Poi nt operator-();

friend bool operator==(const Point& const Pointg&);
friend bool operator!=(const Point& const Pointg&);

friend ostream& operator<<(ostream& const Point&);
friend istream& operator>>(istrean® Point&);

b

The static member Zer o represents Poi nt (0, 0).

v Rect

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chapCfs.htm (4 of 5) [21/08/2002 19:27:18]

Foundation Classes

Rect represents an axis-aligned rectangle. A Rect isdefined by an origin point and an extent (that is,
width and height). The Rect operations are self-explanatory.

cl ass Rect {
publi c:
static const Rect Zero;

Rect (Coord x, Coord y, Coord w, Coord h);
Rect (const Point& origin, const Point& extent);

Coord Wdth() const; voi d Wdt h(Coord);
Coord Height() const; void Height(Coord);
Coord Left() const; voi d Left (Coord);

Coord Botton() const; void Botton{Coord);

Point& Origin() const; void Oigin(const Point&);
Poi nt & Extent () const; void Extent(const Point&);

voi d MoveTo(const Point&);
voi d MoveBy(const Point&);

bool |sEnpty() const;
bool Contains(const Point& const;

s

The static member Zer o is equivalent to the rectangle
Rect (Poi nt (0, 0), Point(0, 0));

a

» Bibliography
4 Guideto Notation

Abstract Factory = Adapter » Bridge = Builder = Chain of Responsibility = Command « Composite »
Decorator *+ Facade * Factory Method * Flyweight = Imterpreter + lterator = Mediator = Memento *
Observer = Prototype + Proxy + Singleton = State » Strategy = Template Method = Visitor

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chapCfs.htm (5 of 5) [21/08/2002 19:27:18]

Bibliography

Case Study | Pattern Catalog | Conclusion

OF" Bibliography

SEARCH

Contents |ﬁ.|i|:|ntu Hﬂﬂdﬂ'5| Glossary | Notation | Foundation | L1UTTTRTTE - Index | Pattern Map |

[Add94]
Addison-Wesley, Reading, MA. NEXTSTEP General Reference: Release 3, Volumes 1 and 2, 1994.

[AG90]
D.B. Anderson and S. Gossain. Hierarchy evolution and the software lifecycle. In TOOLS'90
Conference Proceedings, pages 41-50, Paris, June 1990. Prentice Hall.

[AIS+77]
Christopher Alexander, Saralshikawa, Murray Silverstein, Max Jacobson, Ingrid Fiksdahl-King, and
Shlomo Angel. A Pattern Language. Oxford University Press, New Y ork, 1977.

[App8Y]
Apple Computer, Inc., Cupertino, CA. Macintosh Programmers Workshop Pascal 3.0 Reference,
1989.

[App92]
Apple Computer, Inc., Cupertino, CA. Dylan. An object-oriented dynamic language, 1992.

[Arvol]
James Arvo. Graphics Gems |1. Academic Press, Boston, MA, 1991.

[AS85]
B. Adelson and E. Soloway. The role of domain experience in software design. |EEE Transactions
on Software Engineering, 11(11):1351-1360, 1985.

[BE93]
Andreas Birrer and Thomas Eggenschwiler. Frameworks in the financial engineering domain: An
experience report. In European Conference on Object-Oriented Programming, pages 2135,
Kaiserdautern, Germany, July 1993. Springer-Verlag.

[BJ94]
Kent Beck and Ralph Johnson. Patterns generate architectures. In European Conference on Object-
Oriented Programming, pages 139-149, Bologna, Italy, July 1994. Springer-Verlag.

[Boo94]
Grady Booch. Object-Oriented Analysis and Design with Applications. Benjamin/Cummings,
Redwood City, CA, 1994. Second Edition.

[Bor81]
A. Borning. The programming language aspects of ThingL ab—a constraint-oriented simulation
laboratory. ACM Transactions on Programming Languages and Systems, 3(4):343-387, October
1981.

[Bor94]
Borland International, Inc., Scotts Valley, CA. A Technical Comparison of Borland ObjectWindows
2.0 and Microsoft MFC 2.5, 1994.

[BV90]
Grady Booch and Michael Vilot. The design of the C++ Booch components. In Object-Oriented
Programming Systems, Languages, and Applications Conference Proceedings, pages 1-11, Ottawa,
Canada, October 1990. ACM Press.

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/bibfs.htm (1 of 7) [21/08/2002 19:28:18]

javascript:loadApplet()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/helpfs.htm
javascript:build()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/patcafs.htm

Bibliography

[Cal9g]
Paul R. Calder. Building User Interfaces with Lightweight Objects. PhD thesis, Stanford University,
1993.

[Car89]
J. Carolan. Constructing bullet-proof classes. In Proceedings C++ at Work '89. SIGS Publications,
1989.

[Car92]
Tom Cargill. C++ Programming Style. Addison-Wesley, Reading, MA, 1992.

[CIRM93]
Roy H. Campbell, Nayeem Islam, David Raila, and Peter Madeany. Designing and implementing
Choices. An object-oriented system in C++. Communications of the ACM, 36(9):117-126,
September 1993.

[CL90]
Paul R. Calder and Mark A. Linton. Glyphs: Flyweight objects for user interfaces. In ACM User
Interface Software Technol ogies Conference, pages 92—101, Snowbird, UT, October 1990.

[CL92]
Paul R. Calder and Mark A. Linton. The object-oriented implementation of a document editor. In
Object-Oriented Programming Systems, Languages, and Applications Conference Proceedings,
pages 154-165, Vancouver, British Columbia, Canada, October 1992. ACM Press.

[Coa92]
Peter Coad. Object-oriented patterns. Communications of the ACM, 35(9):152-159, September 1992.

[Co092]
William R. Cook. Interfaces and specifications for the Smalltalk-80 collection classes. In Object-
Oriented Programming Systems, Languages, and Applications Conference Proceedings, pages 1-15,
Vancouver, British Columbia, Canada, October 1992. ACM Press.

[Cop92]
James O. Coplien. Advanced C++ Programming Styles and Idioms. Addison-Wesley, Reading, MA,
1992.

[Cur89]
Bill Curtis. Cognitive issuesin reusing software artifacts. In Ted J. Biggerstaff and Alan J. Perlis,
editors, Software Reusability, Volume I1: Applications and Experience, pages 269-287. Addison-
Wesley, Reading, MA, 1989.

[dCLF93]
Dennis de Champeaux, Doug L ea, and Penelope Faure. Object-Oriented System Devel opment.
Addison-Wesley, Reading, MA, 1993.

[Deu89]
L. Peter Deutsch. Design reuse and frameworks in the Smalltalk-80 system. In Ted J. Biggerstaff
and Alan J. Perlis, editors, Software Reusability, Volume I1: Applications and Experience, pages
57-71. Addison-Wesley, Reading, MA, 1989.

[Ede92]
D. R. Edelson. Smart pointers: They're smart, but they're not pointers. In Proceedings of the 1992
USENIX C++ Conference, pages 1-19, Portland, OR, August 1992. USENIX Association.

[EG92]

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/bibfs.htm (2 of 7) [21/08/2002 19:28:18]

Bibliography

Thomas Eggenschwiler and Erich Gamma. The ET++SwapsManager: Using object technology in
the financia engineering domain. In Object-Oriented Programming Systems, Languages, and
Applications Conference Proceedings, pages 166—178, Vancouver, British Columbia, Canada,
October 1992. ACM Press.

[ES90]
Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++ Reference Manual. Addison-Wesley,
Reading, MA, 1990.

[Foo92]
Brian Foote. A fractal model of the lifecycles of reusable objects. OOPS_A '92 Workshop on Reuse,
October 1992. Vancouver, British Columbia, Canada

[GA89]
S. Gossain and D.B. Anderson. Designing a class hierarchy for domain representation and
reusability. In TOOLS'89 Conference Proceedings, pages 201-210, CNIT Paris—La Defense,
France, November 1989. Prentice Hall.

[Gam9]]
Erich Gamma. Object-Oriented Software Development based on ET++: Design Patterns, Class
Library, Tools (in German). PhD thesis, University of Zurich Institut fr Informatik, 1991.

[Gam92]
Erich Gamma. Object-Oriented Software Development based on ET++: Design Patterns, Class
Library, Tools (in German). Springer-Verlag, Berlin, 1992.

[Gla90]
Andrew Glassner. Graphics Gems. Academic Press, Boston, MA, 1990.

[GM92]
M. Graham and E. Mettala. The Domain-Specific Software Architecture Program. In Proceedings of
DARPA Software Technology Conference, 1992, pages 204-210, April 1992. Also published in
CrossTalk, The Journal of Defense Software Engineering, pages 19-21, 32, October 1992.

[GR83]
Adele J. Goldberg and David Robson. Smalltalk-80: The Language and Its Implementation. Addison-
Wesley, Reading, MA, 1983.

[HHMV92]
Richard Helm, Tien Huynh, Kim Marriott, and John Vlissides. An object-oriented architecture for
constraint-based graphical editing. In Proceedings of the Third Eurographics Workshop on Object-
Oriented Graphics, pages 1-22, Champéry, Switzerland, October 1992. Also available as IBM
Research Division Technical Report RC 18524 (79392).

[HO87]
Daniel C. Halbert and Patrick D. O'Brien. Object-oriented development. |EEE Software, 4(5):71-79,
September 1987.

[ION94]
IONA Technologies, Ltd., Dublin, Ireland. Programmer's Guide for Orbix, Version 1.2, 1994.

[JCJ092]
Ivar Jacobson, Magnus Christerson, Patrik Jonsson, and Gunnar Overgaard. Object-Oriented
Softwar e Engineering—A Use Case Driven Approach. Addison-Wesley, Wokingham, England,
1992.

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/bibfs.htm (3 of 7) [21/08/2002 19:28:18]

Bibliography

[JF88]
Ralph E. Johnson and Brian Foote. Designing reusable classes. Journal of Object-Oriented
Programming, 1(2):22-35, June/July 1988.

[IML92]
Ralph E. Johnson, Carl McConnell, and J. Michael Lake. The RTL system: A framework for code
optimization. In Robert Giegerich and Susan L. Graham, editors, Code Generation—Concepts,
Tools, Techniques. Proceedings of the International Workshop on Code Generation, pages 255-274,
Dagstuhl, Germany, 1992. Springer-Verlag.

[Joh92]
Ralph Johnson. Documenting frameworks using patterns. In Object-Oriented Programming Systems,
Languages, and Applications Conference Proceedings, pages 63—76, Vancouver, British Columbia,
Canada, October 1992. ACM Press.

[JZ91]
Ralph E. Johnson and Jonathan Zweig. Delegation in C++. Journal of Object-Oriented
Programming, 4(11):22-35, November 1991.

[Kir92]
David Kirk. Graphics Gems 111. Harcourt, Brace, Jovanovich, Boston, MA, 1992.

[Knu73]
Donald E. Knuth. The Art of Computer Programming, Volumes 1, 2, and 3. Addison-Wesley,
Reading, MA, 1973.

[Knu84]
Donald E. Knuth. The TeX book. Addison-Wesley, Reading, MA, 1984.

[Kof93]
Thomas Kofler. Robust iteratorsin ET++. Sructured Programming, 14:62-85, March 1993.

[KP8g]
Glenn E. Krasner and Stephen T. Pope. A cookbook for using the model-view controller user
interface paradigm in Smalltalk-80. Journal of Object-Oriented Programming, 1(3):26-49,
August/September 1988.

[LaL94]
Wilf LaLonde. Discovering Smalltalk. Benjamin/Cummings, Redwood City, CA, 1994.

[LCI+92]
Mark Linton, Paul Calder, John Interrante, Steven Tang, and John Vlissides. InterViews Reference
Manual. CSL, Stanford University, 3.1 edition, 1992.

[Lea88]
Doug Lea. libg++, the GNU C++ library. In Proceedings of the 1988 USENIX C++ Conference,
pages 243-256, Denver, CO, October 1988. USENIX Association.

[LG86]
Barbara Liskov and John Guttag. Abstraction and Specification in Program Development. McGraw-
Hill, New Y ork, 1986.

[Lie85]
Henry Lieberman. There's more to menu systems than meets the screen. In SGGRAPH Computer
Graphics, pages 181-189, San Francisco, CA, July 1985.

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/bibfs.htm (4 of 7) [21/08/2002 19:28:18]

Bibliography

[LieB6]
Henry Lieberman. Using prototypical objects to implement shared behavior in object-oriented
systems. In Object-Oriented Programming Systems, Languages, and Applications Conference
Proceedings, pages 214-223, Portland, OR, November 1986.

[Lin92]
Mark A. Linton. Encapsulating a C++ library. In Proceedings of the 1992 USENIX C++
Conference, pages 5766, Portland, OR, August 1992. ACM Press.

[LP93]
Mark Linton and Chuck Price. Building distributed user interfaces with Fresco. In Proceedings of
the 7th X Technical Conference, pages 77-87, Boston, MA, January 1993.

[LR93]
Daniel C. Lynch and Marshall T. Rose. Internet System Handbook. Addison-Wesley, Reading, MA,
1993.

[LVC89]
Mark A. Linton, John M. Vlissides, and Paul R. Calder. Composing user interfaces with InterViews.
Computer, 22(2):8-22, February 1989.

[Mar91]
Bruce Martin. The separation of interface and implementation in C++. In Proceedings of the 1991
USENIX C++ Conference, pages 51-63, Washington, D.C., April 1991. USENIX Association.

[McC87]
Paul McCullough. Transparent forwarding: First steps. In Object-Oriented Programming Systems,
Languages, and Applications Conference Proceedings, pages 331-341, Orlando, FL, October 1987.
ACM Press.

[Mey88]
Bertrand Meyer. Object-Oriented Software Construction. Seriesin Computer Science. Prentice Hall,
Englewood Cliffs, NJ, 1988.

[Mur93]
Robert B. Murray. C++ Strategies and Tactics. Addison-Wesley, Reading, MA, 1993.

[0J90]
William F. Opdyke and Ralph E. Johnson. Refactoring: An aid in designing application frameworks
and evolving object-oriented systems. In SOOPPA Conference Proceedings, pages 145-161, Marist
College, Poughkeepsie, NY, September 1990. ACM Press.

[0J93]
William F. Opdyke and Ralph E. Johnson. Creating abstract superclasses by refactoring. In
Proceedings of the 21st Annual Computer Science Conference (ACM CSC '93), pages 66—73,
Indianapolis, IN, February 1993.

[P+88]
Andrew J. Palay et al. The Andrew Toolkit: An overview. In Proceedings of the 1988 Winter
USENIX Technical Conference, pages 9-21, Dallas, TX, February 1988. USENIX Association.

[Par90]
ParcPlace Systems, Mountain View, CA. ObjectWorks\Smalltalk Release 4 Users Guide, 1990.

[Pass6]

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/bibfs.htm (5 of 7) [21/08/2002 19:28:18]

Bibliography

Geoffrey A. Pascoe. Encapsulators: A new software paradigm in Smalltalk-80. In Object-Oriented
Programming Systems, Languages, and Applications Conference Proceedings, pages 341-346,
Portland, OR, October 1986. ACM Press.

[Pug90]
William Pugh. Skiplists: A probabilistic aternative to balanced trees. Communications of the ACM,
33(6):668-676, June 1990.

[RBP+91]
James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and William L orenson.
Object-Oriented Modeling and Design. Prentice Hall, Englewood Cliffs, NJ, 1991.

[Rum94]
James Rumbaugh. The life of an object model: How the object model changes during development.
Journal of Object-Oriented Programming, 7(1):24-32, March/April 1994.

[SE84]
Elliot Soloway and Kate Ehrlich. Empirical studies of programming knowledge. | EEE Transactions
on Software Engineering, 10(5):595-609, September 1984.

[Sha90]
Y en-Ping Shan. MoDE: A UIMS for Smalltalk. In ACM OOPSLA/ECOOP '90 Conference
Proceedings, pages 258-268, Ottawa, Ontario, Canada, October 1990. ACM Press.

[Sny86]
Alan Snyder. Encapsulation and inheritance in object-oriented languages. In Object-Oriented
Programming Systems, Languages, and Applications Conference Proceedings, pages 3845,
Portland, OR, November 1986. ACM Press.

[SS86]
James C. Spohrer and Elliot Soloway. Novice mistakes. Are the folk wisdoms correct?
Communications of the ACM, 29(7):624—632, July 1986.

[SS94]
Douglas C. Schmidt and Tatsuya Suda. The Service Configurator Framework: An extensible
architecture for dynamically configuring concurrent, multi-service network daemons. In Proceeding
of the Second International Workshop on Configurable Distributed Systems, pages 190-201,
Pittsburgh, PA, March 1994. |EEE Computer Society.

[Stro1]
Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, Reading, MA, 1991.
Second Edition.

[Strog]
Paul S. Strauss. IRIS Inventor, a 3D graphics toolkit. In Object-Oriented Programming Systems,
Languages, and Applications Conference Proceedings, pages 192—-200, Washington, D.C.,
September 1993. ACM Press.

[Stro4]
Bjarne Stroustrup. The Design and Evolution of C++. Addison-Wesley, Reading, MA, 1994.

[Sut63]
|.E. Sutherland. Sketchpad: A Man-Machine Graphical Communication System. PhD thesis, MIT,
1963.

[Swess]

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/bibfs.htm (6 of 7) [21/08/2002 19:28:18]

Bibliography

Richard E. Sweet. The Mesa programming environment. S GPLAN Notices, 20(7):216-229, July
1985.

[Sym93a]
Symantec Corporation, Cupertino, CA. Bedrock Developer's Architecture Kit, 1993.

[Sym93b]
Symantec Corporation, Cupertino, CA. THINK Class Library Guide, 1993.

[Sza92]
Duane Szafron. SPECTalk: An object-oriented data specification language. In Technology of Object-
Oriented Languages and Systems (TOOLS 8), pages 123-138, Santa Barbara, CA, August 1992.
Prentice Hall.

[US87]
David Ungar and Randall B. Smith. Self: The power of simplicity. In Object-Oriented Programming
Systems, Languages, and Applications Conference Proceedings, pages 227-242, Orlando, FL,
October 1987. ACM Press.

[VL8g]
John M. Vlissidesand Mark A. Linton. Applying object-oriented design to structured graphics. In
Proceedings of the 1988 USENIX C++ Conference, pages 81-94, Denver, CO, October 1988.
USENIX Association.

[VL9O]
John M. Vlissides and Mark A. Linton. Unidraw: A framework for building domain-specific
graphical editors. ACM Transactions on Information Systems, 8(3):237-268, July 1990.

[WBJ90]
Rebecca Wirfs-Brock and Ralph E. Johnson. A survey of current research in object-oriented design.
Communications of the ACM, 33(9):104-124, 1990.

[WBWW90]
Rebecca Wirfs-Brock, Brian Wilkerson, and Lauren Wiener. Designing Object-Oriented Software.
Prentice Hall, Englewood Cliffs, NJ, 1990.

[WGM8g]
André Weinand, Erich Gamma, and Rudolf Marty. ET++—An object-oriented application
framework in C++. In Object-Oriented Programming Systems, Languages, and Applications
Conference Proceedings, pages 46-57, San Diego, CA, September 1988. ACM Press.

ndex
Foundation Classes

& ¥ P

Abstract Factory = Adapter = Bridge * Builder = Chain of Responsibility = Command = Composite =
Decorator * Facade = Factory Method = Flyweight = Imterpreter = lterator = Mediator = Memento »
Observer = Prototype + Proxy + Singleton = State + Strategy *+ Template Method + Visitor

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/bibfs.htm (7 of 7) [21/08/2002 19:28:18]

Bibliography

[Add94]
Addison-Wesley, Reading, MA. NEXTSTEP General Reference: Release 3, Volumes 1 and 2,
1994,

[AGI0]
D.B. Anderson and S. Gossain. Hierarchy evolution and the software lifecycle. In TOOLS'90
Conference Proceedings, pages 41-50, Paris, June 1990. Prentice Hall.

[AIS+77]
Christopher Alexander, Sara lshikawa, Murray Silverstein, Max Jacobson, Ingrid Fiksdahl-King,
and Shlomo Angel. A Pattern Language. Oxford University Press, New Y ork, 1977.

[App89]
Apple Computer, Inc., Cupertino, CA. Macintosh Programmers Workshop Pascal 3.0 Reference,
19809.

[App92]
Apple Computer, Inc., Cupertino, CA. Dylan. An object-oriented dynamic language, 1992.

[Arvol]
James Arvo. Graphics Gems I1. Academic Press, Boston, MA, 1991.

[AS85]
B. Adelson and E. Soloway. The role of domain experience in software design. |EEE
Transactions on Software Engineering, 11(11):1351-1360, 1985.

[BE93J]
Andreas Birrer and Thomas Eggenschwiler. Frameworks in the financial engineering domain: An
experience report. In European Conference on Object-Oriented Programming, pages 21-35,
Kaiserdautern, Germany, July 1993. Springer-Verlag.

[BJY]
Kent Beck and Ralph Johnson. Patterns generate architectures. In European Conference on
Object-Oriented Programming, pages 139149, Bologna, Italy, July 1994. Springer-Verlag.

[B0094]
Grady Booch. Object-Oriented Analysis and Design with Applications. Benjamin/Cummings,
Redwood City, CA, 1994. Second Edition.

[Bor81]
A. Borning. The programming language aspects of ThingL ab—a constraint-oriented simulation
laboratory. ACM Transactions on Programming Languages and Systems, 3(4):343-387, October
1981.

[Bor 94]

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/bib-0.htm (1 of 9) [21/08/2002 19:28:32]

Bibliography

Borland International, Inc., Scotts Valley, CA. A Technical Comparison of Borland
ObjectWindows 2.0 and Microsoft MFC 2.5, 1994.

[BV (]
Grady Booch and Michael Vilot. The design of the C++ Booch components. In Object-Oriented
Programming Systems, Languages, and Applications Conference Proceedings, pages 1-11,
Ottawa, Canada, October 1990. ACM Press.

[Cal93]
Paul R. Calder. Building User Interfaces with Lightweight Objects. PhD thesis, Stanford
University, 1993.

[Car89]
J. Carolan. Constructing bullet-proof classes. In Proceedings C++ at Work '89. SIGS
Publications, 1989.

[Car92]
Tom Cargill. C++ Programming Syle. Addison-Wesley, Reading, MA, 1992,

[CIRM93]
Roy H. Campbell, Nayeem Islam, David Raila, and Peter Madeany. Designing and implementing
Choices: An object-oriented system in C++. Communications of the ACM, 36(9):117-126,
September 1993.

[CLOO]
Paul R. Calder and Mark A. Linton. Glyphs: Flyweight objects for user interfaces. In ACM User
Interface Software Technol ogies Conference, pages 92—-101, Snowbird, UT, October 1990.

[CL92]
Paul R. Calder and Mark A. Linton. The object-oriented implementation of a document editor. In
Object-Oriented Programming Systems, Languages, and Applications Conference Proceedings,
pages 154-165, Vancouver, British Columbia, Canada, October 1992. ACM Press.

[Coa92]
Peter Coad. Object-oriented patterns. Communications of the ACM, 35(9):152—-159, September
1992,

[C0092]
William R. Cook. Interfaces and specifications for the Smalltalk-80 collection classes. In Object-
Oriented Programming Systems, Languages, and Applications Conference Proceedings, pages
1-15, Vancouver, British Columbia, Canada, October 1992. ACM Press.

[Cop92]

James O. Coplien. Advanced C++ Programming Styles and Idioms. Addison-Wesley, Reading,
MA, 1992.

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/bib-0.htm (2 of 9) [21/08/2002 19:28:32]

Bibliography

[Cur89]
Bill Curtis. Cognitive issuesin reusing software artifacts. In Ted J. Biggerstaff and Alan J. Perlis,
editors, Software Reusability, Volume I1: Applications and Experience, pages 269-287. Addison-
Wesley, Reading, MA, 1989.

[dCLF93]
Dennis de Champeaux, Doug Lea, and Penel ope Faure. Object-Oriented System Devel opment.
Addison-Wesley, Reading, MA, 1993.

[Deu89]
L. Peter Deutsch. Design reuse and frameworks in the Smalltalk-80 system. In Ted J. Biggerstaff
and Alan J. Perlis, editors, Software Reusability, Volume |1: Applications and Experience, pages
57-71. Addison-Wesley, Reading, MA, 1989.

[Ede92]
D. R. Edelson. Smart pointers: They're smart, but they're not pointers. In Proceedings of the 1992
USENIX C++ Conference, pages 1-19, Portland, OR, August 1992. USENIX Association.

[EG9I2]
Thomas Eggenschwiler and Erich Gamma. The ET++SwapsManager: Using object technology in
the financial engineering domain. In Object-Oriented Programming Systems, Languages, and
Applications Conference Proceedings, pages 166—178, Vancouver, British Columbia, Canada,
October 1992. ACM Press.

[ES9O]
Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++ Reference Manual. Addison-
Wesley, Reading, MA, 1990.

[Fo092]
Brian Foote. A fractal model of the lifecycles of reusable objects. OOPS_A '92 Workshop on
Reuse, October 1992. Vancouver, British Columbia, Canada.

[GA89]
S. Gossain and D.B. Anderson. Designing a class hierarchy for domain representation and
reusability. In TOOLS'89 Conference Proceedings, pages 201-210, CNIT Paris—LaDefense,
France, November 1989. Prentice Hall.

[Gam91]
Erich Gamma. Object-Oriented Software Development based on ET++: Design Patterns, Class
Library, Tools (in German). PhD thesis, University of Zurich Institut fur Informatik, 1991.

[Gam92]
Erich Gamma. Object-Oriented Software Development based on ET++: Design Patterns, Class
Library, Tools (in German). Springer-Verlag, Berlin, 1992.

[Glag0]

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/bib-0.htm (3 of 9) [21/08/2002 19:28:32]

Bibliography

Andrew Glassner. Graphics Gems. Academic Press, Boston, MA, 1990.

[GM92]
M. Graham and E. Mettala. The Domain-Specific Software Architecture Program. In Proceedings
of DARPA Software Technology Conference, 1992, pages 204—210, April 1992. Also published in
CrossTalk, The Journal of Defense Software Engineering, pages 19-21, 32, October 1992.

[GR83]
Adele J. Goldberg and David Robson. Smalltalk-80: The Language and Its Implementation.
Addison-Wesley, Reading, MA, 1983.

[HHMV92]
Richard Helm, Tien Huynh, Kim Marriott, and John Vlissides. An object-oriented architecture for
constraint-based graphical editing. In Proceedings of the Third Eurographics Workshop on
Object-Oriented Graphics, pages 1-22, Champéry, Switzerland, October 1992. Also available as
IBM Research Division Technical Report RC 18524 (79392).

[HO87]
Daniel C. Halbert and Patrick D. O'Brien. Object-oriented development. |EEE Software,
4(5):71-79, September 1987.

[lON94]
IONA Technologies, Ltd., Dublin, Ireland. Programmer's Guide for Orbix, Version 1.2, 1994.

[JCJO92]
Ivar Jacobson, Magnus Christerson, Patrik Jonsson, and Gunnar Overgaard. Object-Oriented
Software Engineering—A Use Case Driven Approach. Addison-Wesley, Wokingham, England,
1992.

[JF88]
Ralph E. Johnson and Brian Foote. Designing reusable classes. Journal of Object-Oriented
Programming, 1(2):22-35, June/July 1988.

[JML92]
Ralph E. Johnson, Carl McConnell, and J. Michael Lake. The RTL system: A framework for code
optimization. In Robert Giegerich and Susan L. Graham, editors, Code Gener ation—Concepts,
Tools, Techniques. Proceedings of the International Workshop on Code Generation, pages
255-274, Dagstuhl, Germany, 1992. Springer-Verlag.

[Joh92]
Ralph Johnson. Documenting frameworks using patterns. In Object-Oriented Programming
Systems, Languages, and Applications Conference Proceedings, pages 63—76, Vancouver, British
Columbia, Canada, October 1992. ACM Press.

[JZ91]

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/bib-0.htm (4 of 9) [21/08/2002 19:28:32]

Bibliography

Ralph E. Johnson and Jonathan Zweig. Delegation in C++. Journal of Object-Oriented
Programming, 4(11):22—-35, November 1991.

[Kir92]
David Kirk. Graphics Gems I11. Harcourt, Brace, Jovanovich, Boston, MA, 1992,

[Knu73]
Donad E. Knuth. The Art of Computer Programming, Volumes 1, 2, and 3. Addison-Wesley,
Reading, MA, 1973.

[Knu84]
Donald E. Knuth. The TeX book. Addison-Wesley, Reading, MA, 1984.

[Kof93]
Thomas Kofler. Robust iteratorsin ET++. Structured Programming, 14:62-85, March 1993.

[KP88]
Glenn E. Krasner and Stephen T. Pope. A cookbook for using the model-view controller user
interface paradigm in Smalltalk-80. Journal of Object-Oriented Programming, 1(3):26-49,
August/September 1988.

[Lal 94]
Wilf Lal onde. Discovering Smalltalk. Benjamin/Cummings, Redwood City, CA, 1994.

[LCI+92]
Mark Linton, Paul Calder, John Interrante, Steven Tang, and John Vlissides. InterViews
Reference Manual. CSL, Stanford University, 3.1 edition, 1992.

[L ea88]
Doug Lea. libg++, the GNU C++ library. In Proceedings of the 1988 USENIX C++ Conference,
pages 243-256, Denver, CO, October 1988. USENIX Association.

[LG86]
Barbara Liskov and John Guttag. Abstraction and Specification in Program Devel opment.
McGraw-Hill, New Y ork, 1986.

[Lie85]
Henry Lieberman. There's more to menu systems than meets the screen. In S GGRAPH Computer
Graphics, pages 181-189, San Francisco, CA, July 1985.

[Lie86]
Henry Lieberman. Using prototypical objects to implement shared behavior in object-oriented
systems. In Object-Oriented Programming Systems, Languages, and Applications Conference
Proceedings, pages 214-223, Portland, OR, November 1986.

[Lin92]

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/bib-0.htm (5 of 9) [21/08/2002 19:28:32]

Bibliography

Mark A. Linton. Encapsulating a C++ library. In Proceedings of the 1992 USENIX C++
Conference, pages 5766, Portland, OR, August 1992. ACM Press.

[LP93]
Mark Linton and Chuck Price. Building distributed user interfaces with Fresco. In Proceedings of
the 7th X Technical Conference, pages 77-87, Boston, MA, January 1993.

[LR93]
Daniel C. Lynch and Marshall T. Rose. Internet System Handbook. Addison-Wesley, Reading,
MA, 1993.

[LVC89]
Mark A. Linton, John M. Vlissides, and Paul R. Calder. Composing user interfaces with
InterViews. Computer, 22(2):8-22, February 1989.

[Mar91]
Bruce Martin. The separation of interface and implementation in C++. In Proceedings of the 1991
USENIX C++ Conference, pages 51-63, Washington, D.C., April 1991. USENIX Association.

[McC87]
Paul McCullough. Transparent forwarding: First steps. In Object-Oriented Programming
Systems, Languages, and Applications Conference Proceedings, pages 331-341, Orlando, FL,
October 1987. ACM Press.

[Mey8g]
Bertrand Meyer. Object-Oriented Software Construction. Seriesin Computer Science. Prentice
Hall, Englewood Cliffs, NJ, 1988.

[Mur93]
Robert B. Murray. C++ Strategies and Tactics. Addison-Wesley, Reading, MA, 1993.

[OJ0]
William F. Opdyke and Ralph E. Johnson. Refactoring: An aid in designing application
frameworks and evolving object-oriented systems. In SOOPPA Conference Proceedings, pages
145-161, Marist College, Poughkeepsie, NY, September 1990. ACM Press.

[OJ93]
William F. Opdyke and Ralph E. Johnson. Creating abstract superclasses by refactoring. In
Proceedings of the 21st Annual Computer Science Conference (ACM CSC '93), pages 6673,
Indianapolis, IN, February 1993.

[P+88]
Andrew J. Palay et a. The Andrew Toolkit: An overview. In Proceedings of the 1988 Winter
USENIX Technical Conference, pages 9-21, Dallas, TX, February 1988. USENIX Association.

[Par 90]

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/bib-0.htm (6 of 9) [21/08/2002 19:28:32]

Bibliography

ParcPlace Systems, Mountain View, CA. Object\Works\Smalltalk Release 4 Users Guide, 1990.

[Pas86]
Geoffrey A. Pascoe. Encapsulators. A new software paradigm in Smalltalk-80. In Object-
Oriented Programming Systems, Languages, and Applications Conference Proceedings, pages
341-346, Portland, OR, October 1986. ACM Press.

[Pug90]
William Pugh. Skiplists: A probabilistic alternative to balanced trees. Communications of the
ACM, 33(6):668-676, June 1990.

[RBP+91]
James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and William Lorenson.
Object-Oriented Modeling and Design. Prentice Hall, Englewood Cliffs, NJ, 1991.

[Rum94]
James Rumbaugh. The life of an object model: How the object model changes during
development. Journal of Object-Oriented Programming, 7(1):24-32, March/April 1994.

[SE84]
Elliot Soloway and Kate Ehrlich. Empirical studies of programming knowledge. IEEE
Transactions on Software Engineering, 10(5):595-609, September 1984.

[Sha9(]
Y en-Ping Shan. MoDE: A UIMS for Smalltalk. In ACM OOPSLA/ECOORP '90 Conference
Proceedings, pages 258-268, Ottawa, Ontario, Canada, October 1990. ACM Press.

[Sny86]
Alan Snyder. Encapsulation and inheritance in object-oriented languages. In Object-Oriented
Programming Systems, Languages, and Applications Conference Proceedings, pages 3845,
Portland, OR, November 1986. ACM Press.

[SS86]
James C. Spohrer and Elliot Soloway. Novice mistakes: Are the folk wisdoms correct?
Communications of the ACM, 29(7):624-632, July 1986.

[SS94]
Douglas C. Schmidt and Tatsuya Suda. The Service Configurator Framework: An extensible
architecture for dynamically configuring concurrent, multi-service network daemons. In
Proceeding of the Second International Workshop on Configurable Distributed Systems, pages
190201, Pittsburgh, PA, March 1994. IEEE Computer Society.

[Stro1]

Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, Reading, MA, 1991.
Second Edition.

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/bib-0.htm (7 of 9) [21/08/2002 19:28:32]

Bibliography

[Stro3]
Paul S. Strauss. IRIS Inventor, a 3D graphicstoolkit. In Object-Oriented Programming Systems,
Languages, and Applications Conference Proceedings, pages 192—200, Washington, D.C.,
September 1993. ACM Press.

[Stro4]
Bjarne Stroustrup. The Design and Evolution of C++. Addison-Wesley, Reading, MA, 1994.

[Sut63]
|.E. Sutherland. Sketchpad: A Man-Machine Graphical Communication System. PhD thesis, MIT,
1963.

[Swe85]
Richard E. Sweet. The Mesa programming environment. S GPLAN Notices, 20(7):216-229, July
1985.

[Sym93a]
Symantec Corporation, Cupertino, CA. Bedrock Developer's Architecture Kit, 1993.

[Sym93Db]
Symantec Corporation, Cupertino, CA. THINK Class Library Guide, 1993.

[Sza92]
Duane Szafron. SPECTalk: An object-oriented data specification language. In Technology of
Object-Oriented Languages and Systems (TOOLS 8), pages 123—-138, Santa Barbara, CA, August
1992. Prentice Hall.

[USB7]
David Ungar and Randall B. Smith. Self: The power of ssimplicity. In Object-Oriented
Programming Systems, Languages, and Applications Conference Proceedings, pages 227-242,
Orlando, FL, October 1987. ACM Press.

[VL88]
John M. Vlissides and Mark A. Linton. Applying object-oriented design to structured graphics. In
Proceedings of the 1988 USENIX C++ Conference, pages 81-94, Denver, CO, October 1988.
USENIX Association.

[VL90]
John M. Vlissides and Mark A. Linton. Unidraw: A framework for building domain-specific
graphical editors. ACM Transactions on Information Systems, 8(3):237-268, July 1990.
[WBJI0]
Rebecca Wirfs-Brock and Ralph E. Johnson. A survey of current research in object-oriented
design. Communications of the ACM, 33(9):104-124, 1990.

[WBWW90]

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/bib-0.htm (8 of 9) [21/08/2002 19:28:32]

Bibliography

Rebecca Wirfs-Brock, Brian Wilkerson, and Lauren Wiener. Designing Object-Oriented
Software. Prentice Hall, Englewood Cliffs, NJ, 1990.

[WGM 88]
André Weinand, Erich Gamma, and Rudolf Marty. ET++—An object-oriented application

framework in C++. In Object-Oriented Programming Systems, Languages, and Applications
Conference Proceedings, pages 46-57, San Diego, CA, September 1988. ACM Press.

A
p INndex

4 Foundation Classes

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/bib-0.htm (9 of 9) [21/08/2002 19:28:32]

Index

Case Study | Pattern Catalog | Conclusion

Ol Index

SEARCH

| Contents |Guide to Readers | Glossary | Notation | Foundation | Bibliography [MLCCTS| Pattern Map |

Names of design patterns appear in small capitals: e.g., ADAPTER. Page numbers in bold indicate the
definition of aterm. Numbersin italics indicate a diagram for the term. Letters after a diagram's page
number indicate the kind of diagram: a"c" denotes a class diagram, an "i" denotes an interaction
diagram, and an "0" denotes an object diagram. For example, 88co means that a class and object diagram
appears on page 88.

A

abstract class 15, 16¢, 359, 364, 365¢c
abstract coupling, see coupling, abstract

in OBSERVER 296
ABSTRACT FACTORY 87

extensibility of 91

in catalog summary 8

Lexi'suse of 51

used to configure a subsystem 193
Abstract Factory

participant of ABSTRACT FACTORY 88c, 89
abstract operation, see operation, abstract

use to implement ADAPTER 144
abstract syntax tree 244, 251, 331

class structure for 244c, 331c

constructing in Smalltalk 250

object structure for 2440
AbstractExpression

participant of INTERPRETER245¢, 245

Abstraction
participant of BRIDGE 153c, 154

AbstractProduct
participant of ABSTRACT FACTORY 88c, 89
accumulating state 336
acquaintance 22, 359
C++, defined in 23
compared with aggregation 23
Smalltalk, defined in 23
Action, see COMMAND
active iterator, seeiterator, active
Ada4, 21
Adaptee
participant of ADAPTER 141, 141c
ADAPTER 139
compared with BRIDGE 161, 219
compared with DECORATOR 184
compared with PROXY 216
in catalog summary 8
Adapter

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/indexfs.htm (1 of 2) [21/08/2002 19:29:32]

javascript:loadApplet()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/helpfs.htm
javascript:build()
http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/patcafs.htm

Index

participant of ADAPTER 141, 141c
adapter 140
class adapter 141, 141c
object adapter 141, 141c
parameterized 145
pluggable, see pluggable adapter
two-way 143, 143c
adorner 179
Aqggregate
participant of ITERATOR 259, 259¢
aggregate object 257
aggregation 22, 359
C++, defined in 23
notation for 23
Smalltalk, defined in 23
Alexander, Christopher xiii, 2, 356, 358
algorithm
avoiding dependence on 24
defining steps of 326
family of 317
skeleton 327
AlternationExpression 244co, 343
implemented in Smalltalk 249
aluminum alloy 76
Ambassador, see also PROXY
C++ idiom 208
AnalogClock 303
analysis object model
transforming to design object model 353
ancestor class 361, see also class, parent
Anderson, Bruce xi, 357
AndExp 253

Andrew Toolkit
use of OBSERVER 303

Application 107, 107c, 2230, 224ci, 231, 325, 325c
application programs 25
ApplicationWindow 53, 54c, 55¢, 157, 233c, 234c
ArrayCompositor 42c, 315, 315c, 322
ASCII7Stream 183, 183c
aspect of an object 298
AssignmentNode 333c
associations, see also acquaintance, aggregation

in OMT 364

Abstract Factory = Adapter = Bridge * Builder = Chain of Responsibility = Command = Composite =
Decorator * Facade » Factory Method = Flyweight = Imterpreter = lterator = Mediator = Memento »
Observer * Prototype « Proxy * Singleton * State * Strategy +« Template Method Visitor

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/indexfs.htm (2 of 2) [21/08/2002 19:29:32]

Index

Names of design patterns appear in small capitals: e.g., ADAPTER. Page numbers in bold indicate the
definition of aterm. Numbersin italicsindicate a diagram for the term. Letters after a diagram's page
number indicate the kind of diagram: a"c" denotes a class diagram, an "i" denotes an interaction
diagram, and an "0" denotes an object diagram. For example, 88co means that a class and object
diagram appears on page 88.

A

abstract class 15, 16c, 359, 364, 365¢
abstract coupling, see coupling, abstract
in OBSERVER 296
ABSTRACT FACTORY 87
extensibility of 91
in catalog summary 8
Lexi'suse of 51
used to configure a subsystem 193

Abstract Factory
participant of ABSTRACT FACTORY 88c, 89

abstract operation, see operation, abstract
use to implement ADAPTER 144
abstract syntax tree 244, 251, 331
class structure for 244c, 331c
constructing in Smalltalk 250
object structure for 2440

AbstractExpression
participant of INTERPRETER245c, 245

Abstraction
participant of BRIDGE 153c, 154

AbstractProduct
participant of ABSTRACT FACTORY 88c, 89

accumulating state 336
acquaintance 22, 359
C++, defined in 23
compared with aggregation 23
Smalltalk, defined in 23
Action, see COMMAND
active iterator, see iterator, active
Ada4, 21
Adaptee
participant of ADAPTER 141, 141c
ADAPTER 139
compared with BRIDGE 161, 219

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/index-A.htm (1 of 3) [21/08/2002 19:29:40]

Index

compared with DECORATOR 184
compared with PROXY 216
in catalog summary 8
Adapter
participant of ADAPTER 141, 141c
adapter 140
class adapter 141, 141c
object adapter 141, 141c
parameterized 145
pluggable, see pluggable adapter
two-way 143, 143c
adorner 179
Aggregate
participant of ITERATOR 259, 259c
aggregate object 257
aggregation 22, 359
C++, defined in 23
notation for 23
Smalltalk, defined in 23
Alexander, Christopher xiii, 2, 356, 358
algorithm
avoiding dependence on 24
defining steps of 326
family of 317
skeleton 327
AlternationExpression 244co, 343
implemented in Smalltalk 249
aluminum alloy 76
Ambassador, see also PROXY
C++ idiom 208
AnaogClock 303

analysis object model
transforming to design object model 353

ancestor class 361, see also class, parent
Anderson, Bruce xi, 357
AndExp 253

Andrew Toolkit
use of OBSERVER 303

Application 107, 107c, 2230, 224ci, 231, 325, 325c
application programs 25

ApplicationWindow 53, 54c, 55¢, 157, 233c, 234c
ArrayCompositor 42c, 315, 315c, 322

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/index-A.htm (2 of 3) [21/08/2002 19:29:40]

Index

ASCII7Stream 183, 183c

aspect of an object 298

AssignmentNode 333c

associations, see also acquai ntance, aggregation
inOMT 364

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/index-A.htm (3 of 3) [21/08/2002 19:29:40]

Index

Names of design patterns appear in small capitals: e.g., ADAPTER. Page numbers in bold indicate the
definition of aterm. Numbersin italicsindicate a diagram for the term. Letters after a diagram's page
number indicate the kind of diagram: a"c" denotes a class diagram, an "i" denotes an interaction
diagram, and an "0" denotes an object diagram. For example, 88co means that a class and object
diagram appears on page 88.

C

C4
Calder, Paul 33, 38
callback function 235

Caretaker
participant of MEMENTO 285, 285c, 286i

Cargill, Tom 308

CHAIN OF RESPONSIBILITY 223
combined with COMPOSITEL166, 232
compared with MEDIATOR 348
compared with OBSERVER 348
defined by parent references 166, 232
in catalog summary 8
use of delegation in 21

ChangeManager 299, 300c

Character 38, 38c

character
represented as object 38, 195-196

Cheshire Cat 155

Choices operating system
use of FACADE192

use of PROXY 209

class 14, 359
abstract, see abstract class
adapter, see adapter, class
compared with type 16
concrete, see concrete class
derived 360
friend, see friend class
inability to alter 24
inheritance, see inheritance
instance 15
library, seetoolkit
mixin, see mixin class

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/index-C.htm (1 of 6) [21/08/2002 19:29:52]

Index

notation for 15, 363
parent 15, 361
subclass 15
template, see template
class diagram 363, 365c, 359
class hierarchy
adding operations to 356
connecting parallel 109, 258
explosion 25, 43, 151, 177
minimizing size of 113, 120, 177, 277, 317, 348
visiting multiple 336
class operation 359
alternatives provided by Singleton 128

Client
participant of ABSTRACT FACTORY 88c, 89

participant of ADAPTER 141, 141c
participant of BUILDER98, 98¢, 99i
participant of CHAIN OF RESPONSIBILITY 225ci, 226, 348i
participant of COMMAND 236, 236¢, 237i
participant of COMPOSITE 164c, 165
participant of FLYWEIGHT198c, 199
participant of INTERPRETER245c, 246
participant of PROTOTYPE 119, 119, 119c
client 11
isolating concrete classes from 89
ClockTimer 302
clone operation 117
used in PROTOTYPE 117
implementing 121
cloned object 117
initializing 121
CLOS 4, 260, 338
closure 260, 267
Coad, Peter 357

code structure
run-time versus compile-time 23

CodeGenerationVISITOR 332¢

Colleague
communicating with Mediator278, 282

participant of MEDIATOR 276c¢o, 277, 348i
COMMAND 233
combined with MEMENTO 239, 287

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/index-C.htm (2 of 6) [21/08/2002 19:29:52]

Index

combined with PROTOTY PE 238
in catalog summary 8
useinLexi 64
Command 60, 61c, 233, 233c, 239
configured in Menultem 61
history of 62
participant of COMMAND 236, 236c, 237i, 347i
command
C++ idiom, see functor
copying before execution 238
history, see history list
implemented through C++ templates 239, 240
intelligence of 238
common vocabulary 352

communication
encapsulated or distributed 346

between Strategy and Context 318
between Visitor and Element 337
compilation dependencies
reducing using FACADE188
Compiler 185, 186¢, 191
compiler
example in FACADELS85, 186¢, 188
implemented using VISITOR 331
Smalltalk, see RTL Smalltalk compiler
Component
participant of COMPOSITEL64c, 165, 168
participant of DECORATOR 177, 177c
COMPOSITE 163
caching children of 169
child management 167
combined with INTERPRETER 255
combined with ITERATOR 262
combined with VISITOR 339
compared with DECORATOR 219, 220
compared with INTERPRETER247
data structure for 169, 170
in catalog summary 8
interface of 167
Lexi'suse of 40
parent references 166
sharing components 166

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/index-C.htm (3 of 6) [21/08/2002 19:29:52]

Index

use in Model/View/Controller 5
Composite

participant of COMPOSITEL64c, 165, 1650, 168
CompositeEquipment 171
Composition 41, 42c, 315, 315¢, 320
composition, see object composition
Compositor 41, 42, 315, 315¢, 321

interface 41
CompressingStream 183c, 184
concrete class 15, 359

avoiding specification of 24

isolating clients from 89
ConcreteAggregate

participant of ITERATOR 259, 259c
ConcreteBuilder

participant of BUILDER98c, 99, 99i
ConcreteCommand

participant of COMMAND 236, 236¢, 238
ConcreteComponent

participant of DECORATOR 177, 177c
ConcreteDECORATOR

participant of DECORATOR 177c, 178
ConcreteElement

participant of VISITOR 334, 334c, 335i
ConcreteFactory

participant of ABSTRACT FACTORY 89
ConcreteFlyweight

participant of FLYWEIGHT198co, 199
ConcreteHandler

participant of CHAIN OF RESPONSIBILITY 225c, 226
Concretel mplementor

participant of BRIDGE 153c, 154
Concretel TERATOR

participant of ITERATOR 259, 259¢
ConcreteOBSERVER

participant of OBSERVER 294c, 295, 295i
ConcreteProduct

participant of ABSTRACT FACTORY 88, 89

participant of FACTORY METHOD 108, 108c
ConcretePROTOTY PE

participant of PROTOTYPE 119, 119¢

ConcreteState
participant of STATE 307, 307c

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/index-C.htm (4 of 6) [21/08/2002 19:29:52]

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat3c.htm#structure

Index

ConcreteStrategy
participant of STRATEGY 316¢, 316

ConcreteSubject
participant of OBSERVER 294c, 295, 295i

ConcreteVisitor
participant 334, 334c, 335i
conditional statements
avoiding using STATE 307
avoiding using STRATEGY 317
consolidation phase of lifecycle 353
constraint solving 282, 283
see also ThingLab, QOCA
ConstraintSolver 283-284, 288
constructor 360
Context 252
participant of INTERPRETER245c, 246
participant of STATE 306, 306¢
participant of STRATEGY 316¢, 316
control flow
encapsulating, see MEDIATOR
inversion of 27
Coplien, James 125, 153, 160, 242, 313, 357

copy

deep 121
on write 210
shallow 121
CountingM azeBuilder 104
coupling 360
abstract 188, 278, 296, 359
loose 24, 26, 277, 347, see also decoupling
reducing 24, 187, 188, 223, 226
tight 24,
CreateM aze operation 84
ABSTRACT FACTORY variant (C++) 92
ABSTRACT FACTORY variant (Smalltalk) 94
BUILDER variant 102
FACTORY METHOD variant 114
PROTOTYPE variant (Smalltalk) 123, 125
creational pattern 10, 81
discussion of 135

Creator
participant of FACTORY METHOD 108, 108c

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/index-C.htm (5 of 6) [21/08/2002 19:29:52]

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap3-0.htm#CreateMaze-def

Index

implementation of 111, 113
Cursor, see ITERATOR
Cursor, see iterator, cursor

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/index-C.htm (6 of 6) [21/08/2002 19:29:52]

Index

Names of design patterns appear in small capitals: e.g., ADAPTER. Page numbers in bold indicate the
definition of aterm. Numbersin italicsindicate a diagram for the term. Letters after a diagram's page
number indicate the kind of diagram: a"c" denotes a class diagram, an "i" denotes an interaction
diagram, and an "0" denotes an object diagram. For example, 88co means that a class and object
diagram appears on page 88.

B

BTree 202
base class, see class, parent
Beck, Kent xi, 357

Bedrock
use of DECORATOR 179, 180

behavioral pattern 10, 221
comparison between class and object scope 221
discussion 345

black-box reuse, see reuse, black-box

block, Smalltalk 270

BNF form 247
examples of 243, 248, 251

BombedM azeFactory 93

BombedMazeGame 115

BombedwWall 93, 94, 124

Booch Components
use of ITERATOR 270

use of STRATEGY 323
Booch, Grady xiii, 260
Booch method 363
Boolean
expression 251
variable 254
BooleanExp 252
Border 44, 45c, 460
BorderDecoratorl760, 176c¢, 180
BRIDGE 151
compared with ADAPTER 219
configured by ABSTRACT FACTORY 155
in catalog summary 8
Lexi's use of 58
use of delegationin 21
bridge 152

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/index-B.htm (1 of 2) [21/08/2002 19:30:10]

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap5-0.htm#class-v-object-scope

Index

broadcast communication 296
BUILDER 97
compared with ABSTRACT FACTORY 105, 135

compared with PROTOTYPE 135

in catalog summary 8

use in compiler example 189
Builder

participant of BUILDER98, 98¢
Bureaucrat, CHAIN OF RESPONSIBILITY 232
Button 50c, 2230, 224ci, 229, 279

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/index-B.htm (2 of 2) [21/08/2002 19:30:10]

Index

Names of design patterns appear in small capitals: e.g., ADAPTER. Page numbers in bold indicate the
definition of aterm. Numbersin italicsindicate a diagram for the term. Letters after a diagram's page
number indicate the kind of diagram: a"c" denotes a class diagram, an "i" denotes an interaction
diagram, and an "0" denotes an object diagram. For example, 88co means that a class and object
diagram appears on page 88.

D

data member 360
DebuggingGlyph 182
DECORATOR 175
compared with ADAPTER 175, 184
compared with COMPOSITE44, 173, 219-220
compared with PROXY 216, 219-220
compared with STRATEGY 179
in catalog summary 8
Lexi's use of 45c, 460, 47
lightweight versus heavyweight 179
Decorator 176, 180
participant of DECORATOR 177, 177c, 1800
decorator 175
decoupling, see also coupling, loose
interface and implementation 154
senders and receivers 346
deep copy, see copy, deep
delegate 20, 144
delegation 20, 278, 360
compared with inheritance 20-21
implementing pluggabl e adapters with 144
patterns that rely on 21
dependency 293
managing complex 299
Dependents, see OBSERVER
derived class, see class, derived
design

d§avu 2

density 358

documenting with patterns 27, 352
for change 23

poetry of 356

for reuse 23

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/index-D.htm (1 of 3) [21/08/2002 19:30:22]

Index

design object model 353
design pattern 360
adjunct to design methodology 353
aspects of design varied by 30
benefits 351
catalog summary 8
catalog template 6
classification 10
compared with frameworks 28
diagram of relationships 12
documenting designs with 27, 352
essential elements 3
finding 355
history of 355
how to use 29
purpose 10
refactoring with 353
scope 10
selection of 28
table of 10
destructor 360
ensuring iterator'sis called 266
Dialog 223, 231
DiaogDirector 2740, 275ci, 278
DialogWindow 53, 54c, 55¢
DigitalClock 302

Director
participant of BUILDER98c, 99, 99i

DirectoryBrowser 144, 144c, 145c
discretionary glyph 75
dispatch
double 338
multiple 339
single 338
Doc 205, see also Lexi
Document 107, 107c, 233c, 234, 234c, 325, 325c

document
color 42, 322

formatting 40
logical structure 40
physical structure 35

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/index-D.htm (2 of 3) [21/08/2002 19:30:22]

Index

documenting design with patterns 27, 352

doesNotUnderstand message
used to implement CHAIN OF RESPONSIBILITY 229

used to implement PROXY 212, 215
Domain 192, 192c
Door 82c, 83

extensions for PROTOTYPE 123
double-dispatch, see dispatch, double
downcast 91
Dylan 4

use of MEMENTO 289
dynamic binding 14, 360
dynamic inheritance 309
dynamic_cast in C++ 91, 168

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/index-D.htm (3 of 3) [21/08/2002 19:30:22]

Index

Names of design patterns appear in small capitals: e.g., ADAPTER. Page numbers in bold indicate the
definition of aterm. Numbersin italicsindicate a diagram for the term. Letters after a diagram's page
number indicate the kind of diagram: a"c" denotes a class diagram, an "i" denotes an interaction
diagram, and an "0" denotes an object diagram. For example, 88co means that a class and object
diagram appears on page 88.

E

e-mail address
reaching the authors xii

Eiffel 17, 21

Element
participant of VISITOR 334, 334c

encapsulation 11, 360
breaking with inheritance 19
breaking with VISITOR 337
preserving boundaries of 286
of algorithms, see STRATEGY
of complex update semantics, 299, see also ChangeM anager
of concept that varies 29, 54
of document analysis and traversal 71
of protocol between objects, see MEDIATOR
of how objects are created, see ABSTRACT FACTORY, BUILDER, PROTOTYPE
of traversal, see ITERATOR
of requests 59, see also COMMAND
of state-specific behavior, see STATE
EnchantedM azeFactory 93
envelope-letter idiom 313
Equipment 170, 340
EquipmentVisitor341
error accumulation
avoiding during undo/redo 239

ET++
use of ABSTRACT FACTORY 95

use of ADAPTER 126, 148

use of BRIDGE 160

use of BUILDER105

use of CHAIN OF RESPONSIBILITY 232
use of COMPOSITEL72

use of COMMAND 242

use of DECORATOR 182, 183

use of FACADE192

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/index-E.htm (1 of 2) [21/08/2002 19:31:13]

Index

use of FACTORY METHOD 115

use of FLYWEIGHT206

use of ITERATOR 261

use of MEDIATOR 281

use of OBSERVER 303

use of PROTOTYPE 120, 125

use of PROXY 216

use of STRATEGY 322-323
ET++SwapsManager

use of STRATEGY 323
ETgdb 125
expansion phase of lifecycle 353, 354
explosion, see class hierarchy, explosion
ExtendedHandler 228
external iterator, see iterator, external
extrinsic state, see state, extrinsic

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/index-E.htm (2 of 2) [21/08/2002 19:31:13]

Index

Names of design patterns appear in small capitals: e.g., ADAPTER. Page numbers in bold indicate the
definition of aterm. Numbersin italicsindicate a diagram for the term. Letters after a diagram's page
number indicate the kind of diagram: a"c" denotes a class diagram, an "i" denotes an interaction
diagram, and an "0" denotes an object diagram. For example, 88co means that a class and object
diagram appears on page 88.

F

FACADE 185
compared with MEDIATOR 193, 282
in catalog summary 8
use in Choices 192

Facade
participant of FACADEL85c, 187, 187¢c

facade 185
FACTORY METHOD 107
in catalog summary 8
language-specific variants 112
parameterized with product identifier 110
used to implement ABSTRACT FACTORY 90, 91, 110
used to create an iterator 258
FileStream 183, 183c
FLYWEIGHT 195
combined with COMPOSITEL167, 200
combined with INTERPRETER247
combined with STATE 308
in catalog summary 9
Lexi'suse of 39
participant of FLYWEIGHT198, 198co
flyweight 196, 1960
managing shared 200
FlyweightFactory 204
participant of FLYWEIGHT198co, 199
FontDialogDirector 274, 2740, 275ci
Foote, Brian 353
forwarding requests 229
framework 26, 360
compared with design patterns 28
documenting with patterns 27
graphical editor 117
see Bedrock

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/index-F.htm (1 of 2) [21/08/2002 19:31:28]

Index

see Choices

seeET++

see HotDraw

see MacApp

see NEXTSTEP

see NeXT AppKit

see RApp

see RTL Smalltalk compiler

see Unidraw

trade-offs associated with 27
Fresco 344
friend class 360

used to grant Iterator privileged access to collection 262

used to support Memento287
functor 242
future cash flow 323

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/index-F.htm (2 of 2) [21/08/2002 19:31:28]

Index

Names of design patterns appear in small capitals: e.g., ADAPTER. Page numbers in bold indicate the
definition of aterm. Numbersin italicsindicate a diagram for the term. Letters after a diagram's page
number indicate the kind of diagram: a"c" denotes a class diagram, an "i" denotes an interaction
diagram, and an "0" denotes an object diagram. For example, 88co means that a class and object
diagram appears on page 88.

G

gdb 126

generics 21

Glyph 38, 38c, 42c, 430, 45c¢, 460, 50c, 54c, 67¢
implemented as a flyweight 201-204
interface 39
interface for traversal 66

Glue, see FACADE

GlyphArraylterator67, 67c

GNU gdb 126

grammar 243
maintaining complex 247

Graphic 163c, 208c, 213

GraphicTool 117, 118c

guaranteed receipt of request 226

GUIlFactory 49, 50c, 51

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/index-G.htm [21/08/2002 19:31:39]

Index

Names of design patterns appear in small capitals: e.g., ADAPTER. Page numbers in bold indicate the
definition of aterm. Numbersin italicsindicate a diagram for the term. Letters after a diagram's page
number indicate the kind of diagram: a"c" denotes a class diagram, an "i" denotes an interaction
diagram, and an "0" denotes an object diagram. For example, 88co means that a class and object
diagram appears on page 88.

H

Hamlet 1
Handle/Body, see also BRIDGE
C++ idiom 155, 160
Handler
participant of CHAIN OF RESPONSIBILITY 225, 225ci, 348i

hardware platform
isolating application from 24

help
context-sensitive 223
on-line 223
HelpHandler 224, 224c, 227, 229
history list 62-64, 238
copying commands onto 238
Hollywood principle 327
hook operation 326, 328
in ABSTRACT FACTORY 109
in FACTORY METHOD 109
in PROXY 212
in TEMPLATE METHOD326, 328

HotDraw
use of STATE 313

hub of communication 274
hyphenation 64

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/index-H.htm [21/08/2002 19:31:54]

Index

Names of design patterns appear in small capitals: e.g., ADAPTER. Page numbers in bold indicate the
definition of aterm. Numbersin italicsindicate a diagram for the term. Letters after a diagram's page
number indicate the kind of diagram: a"c" denotes a class diagram, an "i" denotes an interaction
diagram, and an "0" denotes an object diagram. For example, 88co means that a class and object
diagram appears on page 88.

lconWindow 53, 54c, 151-152, 151c, 157
Image 2070, 208c, 213
ImageProxy2070, 208c

| mplementor
participant of BRIDGE 153c, 154

implicit receiver, seereceiver, implicit
incremental changes 287
inheritance 15, 360
C++, defined in 17
class versus interface 16
combined with polymorphism 18
compared with object composition 18, 178
compared with parameterized types 21
dynamic 309
Eiffel, defined in 17
implementation 17, 360
interface 17, 360
mixin, see mixin class
notation for 15, 364, 365c
proper use of 18
reuse through 18
Smalltalk, defined in 17
inorder traversal, see traversal, inorder
Instance, see also class, instance
ensuring unigqueness, see SINGLETON
variable 15, 360
instantiation 15
abstracting process of 48
notation for 15, 364, 365c
integrated circuit 323
interaction diagram 7, 366
in BUILDER99I
in CHAIN OF RESPONSIBILITY 224i, 348i

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/index-I.htm (1 of 3) [21/08/2002 19:32:22]

Index

in COMMAND 237i, 347i

in MEDIATOR 274i, 348i

in MEMENTO 286i

in OBSERVER 295i, 347i

in VISITOR 335i

Lexi'sVisitor74i
interface 13

benefits of programming to 18

bloat 257

conversion, see ADAPTER

for iteration 262

inheritance 13, 17

narrow versus wide in MEMENTO 285

specifying in C++ 17

simplifying subsystems, see FACADE
internal iterator, see iterator, internal
Interpreter 243

combined with COMPOSITE255

combined with VISITOR 247, 255

in catalog summary 9

InterViews
use of ABSTRACT FACTORY 95

use of ADAPTER 148
use of COMMAND 242
use of COMPOSITEL72
use of DECORATOR 182
use of FLYWEIGHTZ205
use of OBSERVER 303
use of SINGLETON133
use of STRATEGY 320,
intrinsic state, see state, intrinsic
inversion of control flow 27
invitation 358
Invoker
participant of COMMAND 236, 236c, 237i, 347i

IRIS Inventor
use of VISITOR 344

ITERATOR 257
combined with COMPOSITE362
combined with VISITOR 339
compared with VISITOR 336

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/index-I.htm (2 of 3) [21/08/2002 19:32:22]

Index

in catalog summary 9
usein Lexi 69

Iterator 67, 67c, 258c, 263, 372
participant of ITERATOR 259, 259¢

iterator 66, 257, 339
access to aggregate 262
active 260
aternativeto in Smalltalk 270
controlling 260
cursor 261
ensuring deletion of 266
external 260, 339, 269
interface to 261, 263
internal 260, 267, 339, see also ListTraverser
null 262, see also NullI TERATOR
over recursive structures 262
parameterized with an operation 267
passive 260
polymorphic 258, 261, 265
privileged access to Aggregate 262
robust 261

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/index-I.htm (3 of 3) [21/08/2002 19:32:22]

Index

Names of design patterns appear in small capitals: e.g., ADAPTER. Page numbers in bold indicate the
definition of aterm. Numbersin italicsindicate a diagram for the term. Letters after a diagram's page
number indicate the kind of diagram: a"c" denotes a class diagram, an "i" denotes an interaction
diagram, and an "0" denotes an object diagram. For example, 88co means that a class and object
diagram appears on page 88.

K

Kit, see also ABSTRACT FACTORY
in InterViews 95
Knuth, Donald 357

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/index-K.htm [21/08/2002 19:33:09]

Index

Names of design patterns appear in small capitals: e.g., ADAPTER. Page numbers in bold indicate the
definition of aterm. Numbersin italicsindicate a diagram for the term. Letters after a diagram's page
number indicate the kind of diagram: a"c" denotes a class diagram, an "i" denotes an interaction
diagram, and an "0" denotes an object diagram. For example, 88co means that a class and object
diagram appears on page 88.

L

lazy initialization 112
L eaf
participant of COMPOSITEL64c, 165, 1650, 168
Lempel-Ziv compression 183
Lexi 33
document structure 35
document traversal and analysis 64
look-and-feel standards 47
multiple window systems 51
user interface 33, 34
user operations 58

libg++
use of BRIDGE 160
lifecycle of software 353, 354
Linton, Mark 344
List 257, 257c, 258c, 263, 369
list box 274
list traversal 257
ListBox 2740, 275ci, 279
Listlterator 67, 257, 257c, 258c, 264, 372
ListTraverser 267
Literal Expression 244co, 344
implemented in Smalltalk 250
look-and-feel standards 87
support in Lexi 35, 47

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/index-L.htm [21/08/2002 19:33:17]

Index

Names of design patterns appear in small capitals: e.g., ADAPTER. Page numbers in bold indicate the
definition of aterm. Numbersin italicsindicate a diagram for the term. Letters after a diagram's page
number indicate the kind of diagram: a"c" denotes a class diagram, an "i" denotes an interaction
diagram, and an "0" denotes an object diagram. For example, 88co means that a class and object
diagram appears on page 88.

M
MacApp
use of CHAIN OF RESPONSIBILITY 232
use of COMMAND 242
use of DECORATOR 179, 180
use of FACTORY METHOD 113, 115
Macbeth 1
MacFactory 50c

Macintosh 48, 52

MacroCommand235, 235c, 241

magic token 346

Manipulator 109, 110c

MapSite 82, 82c

Marriage of Convenience 149

Maze 82c, 84

MazeBuider 101

MazeFactory 92
as singleton 133

MazeGame 84, 114

MazePrototypeFactory122

MEDIATOR 273
combined with OBSERVER 299
compared with CHAIN OF RESPONSIBILITY 348
compared with FACADE282
compared with OBSERVER 346, 348
in catalog summary 9
use of delegation in 21

Mediator
communicating with Colleague 278, 282

participant of MEDIATOR 276c¢o, 277, 348i
omitting abstract class of 278

mediator 274
member function 361, see also operation
MEMENTO 283

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/index-M.htm (1 of 2) [21/08/2002 19:33:26]

Index

in catalog summary 9

Memento
combined with COMMAND 239, 287

participant of MEMENTO 285, 285c, 286i
memento 284

costs associated with 286

language support for 287
MemoryStream 183
Menu 50c, 233c
menu 233

configuring 60, 234

pull-down 58
Menultem 59, 61c, 233, 233c
metaclass 133, 361
method 361, see also operation
Microsoft Windows 52
mixin class 16, 16c¢, 361
Model/View/Controller 4, 5

use of COMPOSITES, 172

use of FACTORY METHOD 115

use of OBSERVER 5, 303

use of STRATEGY6
MonoGlyph 44, 45¢c

MoatifFactory 49, 50c

multiple dispatch, see dispatch, multiple

multiple inheritance, see also mixin class
used to implement class adapter 141
used to implement BRIDGE 156

MV C, see Model/View/Controller

Meyer, Bertrand 149

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/index-M.htm (2 of 2) [21/08/2002 19:33:26]

Index

Names of design patterns appear in small capitals: e.g., ADAPTER. Page numbers in bold indicate the
definition of aterm. Numbersin italicsindicate a diagram for the term. Letters after a diagram's page
number indicate the kind of diagram: a"c" denotes a class diagram, an "i" denotes an interaction
diagram, and an "0" denotes an object diagram. For example, 88co means that a class and object
diagram appears on page 88.

N

naming conventions 29, 31
FACTORY METHOD 31, 113
TEMPLATE METHOD329
VISITOR 337

NeXT AppKit
use of ADAPTER 149

use of BRIDGE 160
use of CHAIN OF RESPONSIBILITY 232
use of TEMPLATE METHOD329

NEXTSTEP
use of ADAPTER 145

use of PROXY 208, 212, 216
Node 333c
NodeVisitor333c
nonterminal symbol 246

NonTerminal Expression
participant of INTERPRETER245c, 246

notification 294

null iterator, see iterator, null
Nulllterator67c, 67-68, 262
NXProxy208, 212

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/index-N.htm [21/08/2002 19:33:31]

Index

Names of design patterns appear in small capitals: e.g., ADAPTER. Page numbers in bold indicate the
definition of aterm. Numbersin italicsindicate a diagram for the term. Letters after a diagram's page
number indicate the kind of diagram: a"c" denotes a class diagram, an "i" denotes an interaction
diagram, and an "0" denotes an object diagram. For example, 88co means that a class and object
diagram appears on page 88.

O

object 11, 361
adapter, see adapter, object
acquaintance 22
aggregation 22
as argument to request 345
aspect of 298
avoiding dependence on implementation of 24
composition, see object composition
finding
granularity of 13, see also FLYWEIGHT
guts 179
reference 361
shared, see FLYWEIGHT
skin 179
specifying implementation of 14
specifying interface to 13
object composition 18, 361
compared with inheritance 18-20
compared with parameterized types 22
reuse through 19
object diagram 364, 361
Objectsfor States, see STATE
Object Modeling Technique 7, 14, 363, 364
Objective C 90, 120, 121, 135, 144
Objectory 363

ObjectWindows
use of ITERATOR 270

use of STRATEGY 323
ObjectWorks\Small Talk, see also Smalltalk
use of ADAPTER 148-149
use of DECORATOR 182
use of FACADE191
OBSERVER 293

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/index-O.htm (1 of 2) [21/08/2002 19:33:49]

Index

combined with MEDIATOR 278, 282

compared with CHAIN OF RESPONSIBILITY 346, 348
compared with MEDIATOR 346, 348

in Model/View/Controller 5

in catalog summary 8

limiting unexpected updatesin 296

Observer 300

combining with Subject 300
participant of OBSERVER 294c, 295, 295i, 300c, 347i

OMT, see Object Modeling Technique
operation 11, 361

Orbix

abstract 15, 359

adding to classes 335

avoiding dependence on specific 24
class, see class operation

concrete 327

dispatch, see dispatch

hook, see hook operation
overriding 16

primitive 327, 329

use of FACTORY METHOD 116

Originator

participant of MEMENTO 285, 285c, 286i

originator 284
overloading

used to implement PROXY 211
used to implement VISITOR 72, 337

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/index-O.htm (2 of 2) [21/08/2002 19:33:49]

Index

Names of design patterns appear in small capitals: e.g., ADAPTER. Page numbers in bold indicate the
definition of aterm. Numbersin italicsindicate a diagram for the term. Letters after a diagram's page
number indicate the kind of diagram: a"c" denotes a class diagram, an "i" denotes an interaction
diagram, and an "0" denotes an object diagram. For example, 88co means that a class and object
diagram appears on page 88.

P

parameterized types 21, 361, see also template
compared with inheritance 22
compared with composition 22

parent class, see class, parent

parent references
defined in COMPOSITEL66

parser 247

part-whole, see recursive composition
see also aggregation

Pascal 4

passive iterator, see iterator, passive

PassivityWrapper 182

path

specifying multi-segment shapes 57
pattern language 356
Pattern Languages of Programs 357
pattern matching 243
persistence 209
Picture 163c, 1640
PLOP, see Pattern Languages of Programs
pluggable adapter 142

implementation of 144-145, 144c, 145c, 148, 149c
PM Factory 50c
PMIconWindow 151, 151c
PMWindow 151, 151c
PMWindowlImp 152, 152c, 158-159
Point 373
Policy, see STRATEGY
polymorphic iteration 258

implementing in C++ 261
polymorphism 14, 361

used with inheritance 18
postorder traversal, see traversal, postorder

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/index-P.htm (1 of 3) [21/08/2002 19:33:56]

Index

preorder traversal, see traversal, preorder
Preorderlterator67/
member functions 68-69

PricingVISITOR 341
PrintDialog 2230, 224i
private inheritance 361, see also inheritance, implementation

Product
participant of BUILDER 98c, 99

participant of FACTORY METHOD 108, 108c
product objects 49
changing at run-time 119
creating in ABSTRACT FACTORY 90
exchanging 89
family of 87
varying representation of 100
protection proxy, see proxy, protection
protocol 361
PROTOTYPE 117
compared with ABSTRACT FACTORY 126, 135
combined with COMMAND 238
compared with FACTORY METHOD 116, 120
in catalog summary 9
participant of PROTOTYPE 119, 119¢
used to implement ABSTRACT FACTORY 90
prototype 11/
prototype manager 121
prototyping phase of lifecycle 353
PROXY 207
combined with ITERATOR 262
compared with DECORATOR 220
in catalog summary 9

Proxy
participant of PROXY 209co, 209

proxy 207

protection 208, 210

remote 208, 210

virtual 208, 210
pseudocode 16, 16c, 365c
Publish-Subscribe, see OBSERVER
pull model 298

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/index-P.htm (2 of 3) [21/08/2002 19:33:56]

Index

pull-down menu, see menu, pull-down
purpose of design pattern, see design pattern, purpose
push model 298

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/index-P.htm (3 of 3) [21/08/2002 19:33:56]

Index

Names of design patterns appear in small capitals: e.g., ADAPTER. Page numbers in bold indicate the
definition of aterm. Numbersin italicsindicate a diagram for the term. Letters after a diagram's page
number indicate the kind of diagram: a"c" denotes a class diagram, an "i" denotes an interaction
diagram, and an "0" denotes an object diagram. For example, 88co means that a class and object
diagram appears on page 88.

Q

QOCA
use of ADAPTER 143

use of INTERPRETER255
use of MEMENTO 291

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/index-Q.htm [21/08/2002 19:34:01]

Index

Names of design patterns appear in small capitals: e.g., ADAPTER. Page numbers in bold indicate the
definition of aterm. Numbersin italicsindicate a diagram for the term. Letters after a diagram's page
number indicate the kind of diagram: a"c" denotes a class diagram, an "i" denotes an interaction
diagram, and an "0" denotes an object diagram. For example, 88co means that a class and object
diagram appears on page 88.

R

RApPp
use of STRATEGY 323

Real Subject
participant of PROXY 209co, 210

Receiver
participant of COMMAND 236, 236c¢, 237i, 238

receiver 361
decoupling from sender 346
implicit 224
Rect 374
Rectangle 20, 20c
recursive composition 36, see also COMPOSITE
iteration over 262
of document structure 36
of graphic elements 163
of part-whole structures 164
redesign, causes of 24
redo, see undo/redo
refactoring 326, 353
reference counting 210

RefinedAbstraction
participant of BRIDGE 153c, 154

regular expression 243
representing in Smalltalk 248
RegularExpression 244c
remote proxy, see proxy, remote
RepetitionExpression 244co, 343
implemented in Smalltalk 249
request 11, 361
automatic forwarding of 229
encapsulation of 59, see also COMMAND
guaranteed receipt of 226
representing 227
sequencing 234

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/index-R.htm (1 of 2) [21/08/2002 19:34:11]

Index

Responder 232

reuse
black-box 19, 354, 359

by composition 19

by parameterized types 21

by subclassing 19

code 26

designing for 24-25

frameworks 26

internal 25

maximizing 23

of implementation 18

toolkits 26

white-box 19, 354, 362
Rich Text Format 97
robust iterator, see iterator, robust
Room 82c, 83
RTF, see Rich Text Format
RTFReader 97, 97c

RTL Smalltalk compiler
use of COMPOSITEL72

use of STRATEGY 323

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/index-R.htm (2 of 2) [21/08/2002 19:34:11]

Index

Names of design patterns appear in small capitals: e.g., ADAPTER. Page numbers in bold indicate the
definition of aterm. Numbersin italicsindicate a diagram for the term. Letters after a diagram's page
number indicate the kind of diagram: a"c" denotes a class diagram, an "i" denotes an interaction
diagram, and an "0" denotes an object diagram. For example, 88co means that a class and object
diagram appears on page 88.

S

scope of design pattern, see design pattern, scope
Scrollbar 50c

ScrollDecorator1760, 176¢

Scroller 45, 460

Self 4, 121, 309

sender

decoupling from receiver 346
SequenceExpression 244co, 343
implemented in Smalltalk 249
sequencing requests 234
shallow copy, see copy, shallow
Shape 139, 140c, 146
shrinkability 320
signature 13, 361
SimpleCompositor 42, 42c, 315, 315¢, 321
single static assignment form, SSA 172
single-dispatch, see dispatch, single
SINGLETON 127
C++ implementation 129, 131
in catalog summary 9
registry of 130
subclassing 130
used to implement ABSTRACT FACTORY 90
Singleton
participant of SINGLETON127c, 128
Sketchpad 125
SkipList 258c, 265
skiplist 258
Smalltalk-80, see also ObjectWorks\Smalltalk, Smalltalk/V
use of BUILDER105
use of COMPOSITEL72
use of FACTORY METHOD 115
use of INTERPRETER251

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/index-S.htm (1 of 3) [21/08/2002 19:34:44]

Index

use of ITERATOR 270
use of OBSERVER 303
use of SINGLETON133
use of VISITOR 344

Smalltak/V
use of INTERPRETER251

use of MEDIATOR 278, 281
smart pointers 209
smart references 209

software platform
isolating application from 24

Solitaire, see SINGELTON
SolverState283-284

SPECTak
use of INTERPRETER255

spelling checking 64
SpellingChecker 71-73
SpellingCheckerVisitor75
StandardM azeBuilder 103
STATE 305
C++ idiom for, see envelope-letter idiom
in catalog summary 9
use of delegation in 21

State
participant of STATE 306, 306C

state
accumulating during traversal 336

avoiding inconsistent 308
extrinsic 196

incremental changesto 287
intrinsic 196

sharing 308, see also FLYWEIGHT

state transitions
atomic 308

defining 308
table-driven 308
STRATEGY 315
compared with DECORATOR 179
in catalog summary 8
Lexi's use of 42
use in Choices 193
usein Model/View/Controller 6

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/index-S.htm (2 of 3) [21/08/2002 19:34:44]

Index

use of delegation in 21
Strategy 1800
making optional 320
participant of STRATEGY 316¢, 316
strategy 315
Stream 183, 183c
StreamDecorator183, 183c
stretchability 320
Stroustrup, Bjarne 160
structural pattern 10, 137
comparison between class and object scope 137
discussion of 219
subclass, see class, subclass

subclassing
extending functionality by 24

Subject 301
avoiding dangling references to 297
combining with Observer300
participant of OBSERVER 294c, 295, 295i, 300c, 347i
participant of PROXY 209co, 210
subject 294
mapping to observers 297
observing more than one 297
subsystem 361
simplifying interface to, see FACADE
subtype, see type, subtype
successor 224
connecting in chain 227
implementing chain of 225
superclass 361, see also class, parent
supertype, see type, supertype
Surrogate, see PROXY
Sutherland, Ivan 125
swaps 323

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/index-S.htm (3 of 3) [21/08/2002 19:34:44]

Index

Names of design patterns appear in small capitals: e.g., ADAPTER. Page numbers in bold indicate the
definition of aterm. Numbersin italicsindicate a diagram for the term. Letters after a diagram's page
number indicate the kind of diagram: a"c" denotes a class diagram, an "i" denotes an interaction
diagram, and an "0" denotes an object diagram. For example, 88co means that a class and object
diagram appears on page 88.

T

Target
participant of ADAPTER 141, 141c
TCP protocol 309
TCPConnection 305, 305c¢, 309
TCPState305, 305¢, 310
template 21, see also parameterized types
used to implement COMMAND 239
used to implement FACTORY METHOD 113
used to implement STRATEGY 319, 323
Template Method 325
calling Factory Methods116
in catalog summary 9
naming conventions for 329
used to implement ITERATOR 270
template method 326
terminal symbol 246
shared using FLYWEIGHT247
Terminal Expression
participant of INTERPRETER245c, 246
TEX 42, 97, 316
TeXCompositor 42c, 315, 315c, 322
TextShape 139, 140c, 146, 147

TextView
usein ADAPTER 139, 140c, 146

use in DECORATOR 176c, 1760
ThingLab 125
THINK
use of COMMAND 242
use of OBSERVER 303
Token, see MEMENTO
Tool 117, 118c, 313, 313c
toolkit 26, 233, 362
see Andrew
see Booch Components

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/index-T.htm (1 of 2) [21/08/2002 19:35:25]

Index

see Fresco
see InterViews
see IRIS Inventor
see Object Windows
see QOCA
see THINK
Transaction, see COMMAND
transaction 236
transparent enclosure 43, see also DECORATOR
traversal of aggregate objects, see also ITERATOR
across class hierarchies 336
assigning responsibility for in VISITOR 339
inorder, preorder, postorder 262
TreeAccessorDelegate 145, 145¢
TreeDisplay 142, 144, 144c, 145c
two-way adapter, see adapter, two-way
type 13
compared with class 16
C++, definitionin 17
Eiffel, definition in 17
Smalltalk, definitionin 17
subtype 13
supertype 13
type-checking 332
to identify requests at run-time 228
see also dynamic_cast
TypeCheckingVisitor332c

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/index-T.htm (2 of 2) [21/08/2002 19:35:25]

Index

Names of design patterns appear in small capitals: e.g., ADAPTER. Page numbers in bold indicate the
definition of aterm. Numbersin italicsindicate a diagram for the term. Letters after a diagram's page
number indicate the kind of diagram: a"c" denotes a class diagram, an "i" denotes an interaction
diagram, and an "0" denotes an object diagram. For example, 88co means that a class and object
diagram appears on page 88.

U

undo/redo 59-60, 62-64, 235, 238, 283, 287
avoiding error accumulation during 239

Unidraw
use of ADAPTER 143

use of CHAIN OF RESPONSIBILITY 232
use of COMMAND 232, 242

use of FACTORY METHOD 111

use of ITERATOR 270

use of MEDIATOR 282

use of MEMENTO 289

use of OBSERVER 303

use of PROTOTYPE 126

use of STATE 313

UnsharedConcreteFlyweight
participant of FLYWEIGHT 199

updates
encapsulating complex 299
limiting unexpected 296
protocol for in OBSERVER 296
triggering 297

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/index-U.htm [21/08/2002 19:36:33]

Index

Names of design patterns appear in small capitals: e.g., ADAPTER. Page numbers in bold indicate the
definition of aterm. Numbersin italicsindicate a diagram for the term. Letters after a diagram's page
number indicate the kind of diagram: a"c" denotes a class diagram, an "i" denotes an interaction
diagram, and an "0" denotes an object diagram. For example, 88co means that a class and object
diagram appears on page 88.

V

Validator 323
VariableExp 252
VariableRefNode 333c
ViewManager 281, 2810
Virtual Constructor, see FACTORY METHOD
virtual memory framework 192
virtual proxy, see proxy, virtual
VISITOR 331
combined with INTERPRETER247, 255
in catalog summary 9
interaction diagram for Lexi 74
useinLexi 76
use in compiler example 190, 331
use of delegationin 21
Vigitor75, 337
participant of VISITOR 334, 334c
visitor 74, 332
Visual Component 176, 176c, 180
vocabulary, defining common 352

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/index-V.htm [21/08/2002 19:36:42]

Index

Names of design patterns appear in small capitals: e.g., ADAPTER. Page numbers in bold indicate the
definition of aterm. Numbersin italicsindicate a diagram for the term. Letters after a diagram's page
number indicate the kind of diagram: a"c" denotes a class diagram, an "i" denotes an interaction
diagram, and an "0" denotes an object diagram. For example, 88co means that a class and object
diagram appears on page 88.

W

Wall 82c, 83
white-box reuse, see reuse, white-box
Widget 224c, 230, 275c, 278
widget 48, 87
Glyph hierarchy 50
WidgetFactory 87
Window 20c, 39, 54c, 55c, 152, 156
configuring with Windowlmp 57-58
interface 53
window systems 35
support in Lexi 51
WindowImp 55, 55c, 152, 152¢, 157
subclasses 55
Windows, see Microsoft Windows
WindowSystemFactory 57
Wrapper, see ADAPTER, DECORATOR
WYSIWYG 33

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/index-W.htm [21/08/2002 19:36:50]

Index

Names of design patterns appear in small capitals: e.g., ADAPTER. Page numbers in bold indicate the
definition of aterm. Numbersin italicsindicate a diagram for the term. Letters after a diagram's page
number indicate the kind of diagram: a"c" denotes a class diagram, an "i" denotes an interaction
diagram, and an "0" denotes an object diagram. For example, 88co means that a class and object
diagram appears on page 88.

X

XlconWindow 151, 151c
XWindow 151, 151c
XWindowlmp 152, 152c, 158

http://Ici.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/index-X.htm [21/08/2002 19:36:55]

	lci.cs.ubbcluj.ro
	Design Patterns CD
	Table of Contents
	Design Patterns CD
	Related Books
	Preface to CD
	Preface to Book
	Foreword
	Guide to Readers
	Introduction
	A Case Study
	Creational Patterns
	Abstract Factory
	Builder
	Factory Method
	Prototype
	Singleton
	Discussion of Creational Patterns
	Structural Patterns
	Adapter
	Bridge
	Composite
	Decorator
	Facade
	Flyweight
	Proxy
	Discussion of Structural Patterns
	Behavioral Patterns
	Chain of Responsibility
	Command
	Interpreter
	Iterator
	Mediator
	Memento
	Observer
	State
	Strategy
	Template Method
	Visitor
	Discussion of Behavioral Patterns
	Conclusion
	Glossary
	Glossary
	Guide to Notation
	Foundation Classes
	Bibliography
	Bibliography
	Index
	Index
	Index
	Index
	Index
	Index
	Index
	Index
	Index
	Index
	Index
	Index
	Index
	Index
	Index
	Index
	Index
	Index
	Index
	Index
	Index
	Index
	Index
	Index

